

FRM4SOC-2 existing resources and lessons learned

Riho Vendt, Agnieszka Bialek, Carsten Brockmann, Christophe Lerebourg, Kevin Ruddick, Gavin Tilstone, Juan Ignacio Gossn, Ewa Kwiatkowska

NATIONAL PHYSICAL LABORATORY PML

PML | Plymouth Marine Laboratory

Funded by the European Union

ULr

FRM4SOC (Phase 1) 2016 – 2019

- Initiated, funded and coordinated by ESA
- In a series of several other FRM projects
- <u>https://frm4soc.org</u>

FRM4SOC Phase 2

- Project kick-off 8 April 2021
- Funded by the EU and coordinated by EUMETSAT
- Project end March 2023 (24 months)
- Two optional 12 month extensions may be granted
- https://frm4soc2.eumetsat.int/

The Fiducial Reference Measurements (FRM)

fi·du·cial (adj) Regarded or employed as a standard of reference, as in surveying.

[Latin *fīdūciālis, fīdūcia* - trust,confidence.]

In Earth Observation – a best estimate for the "ground truth"

The FRM must:

- have documented traceability to SI units (via an unbroken chain of calibrations and comparisons);
- be independent from the satellite retrieval process;
- be accompanied by a complete **estimate of uncertainty**, including contributions from all FRM instruments and all data acquisition and processing steps;
- follow well-defined procedures/community-wide management practices and;
- be openly available for independent scrutiny.

✓ Donlon, C.; Goryl, P. Fiducial Reference Measurements (FRM) for Sentinel-3. In Proceedings of the Sentinel-3 Validation Team (S3VT) Meeting, ESA/ESRIN, Frascati, Italy, 26–29 November 2013.

✓ G. Zibordi and C. J. Donlon, Chapters 3 and 5, vol. 47, G. Zibordi, C. J. Donlon, and A. C. Parr, Eds. Academic Press, 2014.

Donlon, C.J.; Wimmer, W.; Robinson, I.; Fisher, G.; Ferlet, M.; Nightingale, T.; Bras, B. A., Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers.
 J. Atmospheric Ocean. Technol. 2014, 31, 1104–1127.

SeaWiFS Project Technical Report Series NASA/TM-2003-21621/Rev-Vol I CCG This page provides access to the SeaWiFS Project Technical Report Series and SeaWIFS-related articles. James L. Mueller, Giulietta S. Fargion and Charles R. McClain, Editors All titles including those already published, those in press and those under preparation will be made **IOCCG Protocol Series** available through this page. J. L. Mueller, R.W. Austin, A. Morel, G.S. Fargion, and C.R. McClain, Authors. Currently, only the full citations and abstracts are online. We hope to be able to provide the full text and figures sometime in the near future. Until then, copies of the SeaWiFS Project Technical Reports can be **Ocean Optics Protocols For Satellite Ocean Color Sensor** obtained from: Validation, Revision 4, Volume I: **Ocean Optics & Biogeochemistry Protocols for** Elaine R. Firestone **Technical Editor** Satellite Ocean Colour Sensor Validation SeaWiFS Technical Report Series Introduction, Background and Conventions Code 970.2 NASA/Goddard Space Flight Center Greenbelt, MD 20771 (301) 286-4553 Volume 3: Protocols for Satellite Ocean Colour Data gsfcmail: efirestone National Aeronautical and Validation: In Situ Optical Radiometry (v3.0) internet: elaine@seawifs.gsfc.nasa.gov Space administration SOOP SIRREX Goddard Space Flight Space Center VOL. 1: An Overview of SeaWiFS and Ocean Color SeaBass Greenbelt, Maryland 20771 Authors VOL. 2: Ascending vs. Descending Node SXR Giuseppe Zibordi, Kenneth J. Voss, B. Carol Johnson and James L. Mueller January 2003 VOL. 3: Calibration and Validation Plan for SeaWiFS. remote sensing A QUALITY ASSURANCE GEO GROUP ON EARTH OBSERVATIONS FRAMEWORK FOR EARTH OBSERVATION **Progress in** Oceanography A Quality Assurance Framework for Earth OPTICAL RADIOMETRY FOR OCEAN CLIMATE MEASUREMENTS Pergamon Progress in Oceanography 45 (2000) 427-465 **Observation:** Principles **Fiducial Reference** Edited by GIUSEPPE ZIBORDI Measurements CRAIG J. DONLON QA4EO task team Author: ALBERT C. PARR for Satellite The calibration and validation of SeaWiFS data E-mail: sec@qa4eo.org **Ocean Colour** Issued under Authority of: QA4EO S.B. Hooker^{*}. C.R. McClain VOLUME 47 NASA Goddard Space Flight Center, Laboratory for Hydrospheric Processes, SeaWiFS Project Code Andrew Clive Banks, Christophe Lerebourg, Kevin Ruddick Gavin Tilstone and Riho Vendt 970.2. Greenbelt, MD 20771, USA Issue no: Version 4.0 SCIENCES Date of issue: 14 January 2010 Æ MDPI

Funded by the European Union

remote sensing

Fiducial Reference Measurements for Satellite Ocean Colour

Edited by Andrew Clive Banks, Christophe Lerebourg, Kevin Ruddick, Gavin Tilstone and Riho Vendt Printed Edition of the Special Issue Published in *Remote Sensing*

w.mdpl.com/journal/remotesensin

Fiducial Reference Measurements for Satellite Ocean Colour Andrew Clive Banks, Christophe Lerebourg, Kevin Ruddick, Gavin Tilstone and Riho Vendt (Eds.)

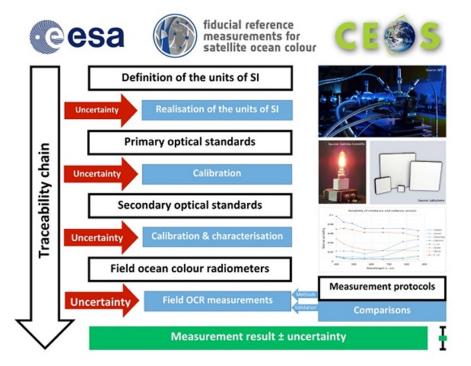
The results of the FRM4SOC project are published as a special issue of the MDPI journal Remote Sensing.

Open Access

Book (Hard Cover): ISBN 978-3-03943-064-2 (Hbk) PDF: ISBN 978-3-03943-065-9 (PDF) https://doi.org/10.3390/books978-3-03943-065-9 Individual papers (web page of the special issue) © 2020 by the authors; CC BY licence

Funded by the European Union

MDPI



Implementing the FRM principles

We need to define:

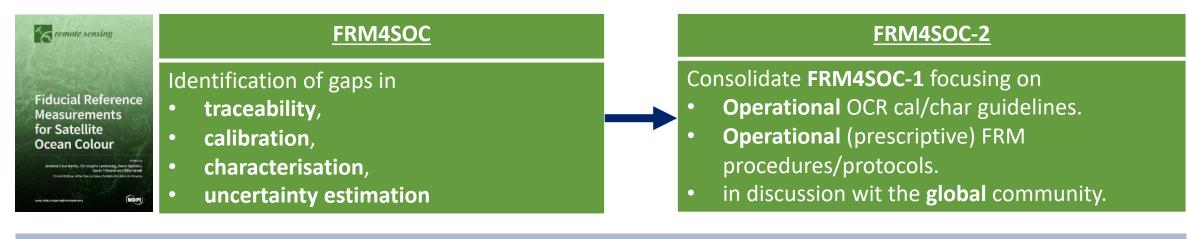
- 1. measured quantities and measurement models (equations)
- 2. how to measure (protocols/procedures)
- 3. choice of adequate instruments
- 4. establish traceability to SI
- 5. build measurement uncertainty budgets
- Implement p1 p5 adequately (competent personnel, training, common understanding)
- 7. validate traceability and uncertainty budgets in intercomparisons

Remote Sens. 2020, 12, 1322; doi:10.3390/rs12081322

Conclusions / Lessons learned from FRM4SOC-1

- Traceability to SI with related uncertainty budget is essential for collecting high quality EO data.
- Carefully planned FRM4SOC comparisons have revealed errors, that (would) have not been discovered in regular measurement campaigns.
- Laboratory as well as in situ comparison exercises must continue and include even more global cooperation on all levels.
- Measurement protocols shall be globally harmonised as well as understood and followed uniformly on all levels.
- Improved and harmonised understanding of uncertainty evaluation is needed best practice, examples, training.
- Specifications for new generation (e.g. hyperspectral) instruments shall be identified and required metrology infrastructure shall be developed accordingly.
- The FRM activities shall be continued and ensured with appropriate funding.

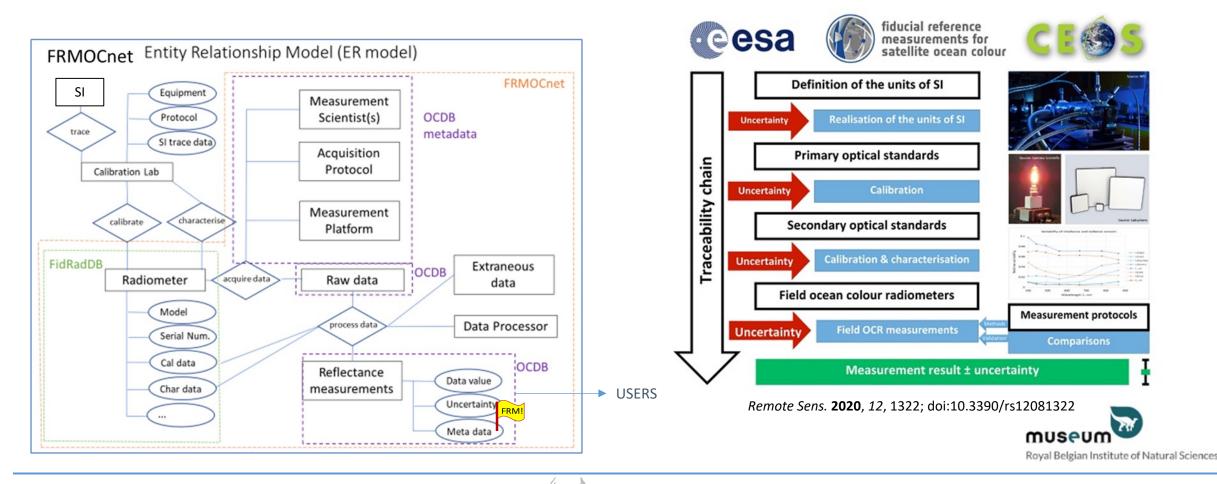
Banks A. C., et al., Remote Sens. 2020, 12, 1322; doi:10.3390/rs12081322



Goals of the FRM4SOC Phase 2

Ensure the adoption of FRM principles across the Ocean Colour community.

- FRM4SOC-2 builds on the outcomes from earlier studies in the field and the first FRM4SOC study managed by ESA
- We are developing a network of radiometric measurements with the FRM certification.


The guidelines to obtain FRMs must be clear and as straightforward as possible.

Funded by the European Union

FRMOCnet (network of radiometric measurements with FRM certification)

9. Review and test the developed procedures, guidelines and tools: a field experiment, an international workshop, Expert Review Board

8. Adapt and maintain Ocean Colour In-Situ

7. Develop a complete end-to-end uncertainty budget for the instruments and the measurements, include the uncertainty calculations in the community processor

> 6. Develop a community processor for in situ radiometric measurements (cooperating with NASA on HyperInSPACE)

 Initially focus on the two most common Ocean Colour hyperspectral radiometer classes

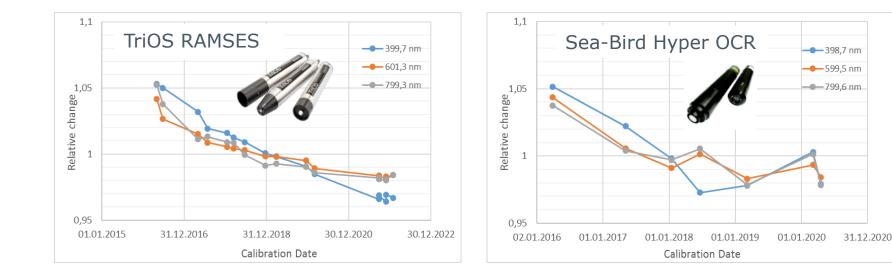
5. Provide prescriptive and detailed FRM in situ procedures (following from the IOCCG protocols (following from the IOCCG protocols and FRM4SOC-1 experience)

2. Fully characterise the two Ocean Colour radiometer classes (issue recommendations to instrument manufacturers)

Parameter	Scope	Before initial use	Re-cal/char	D-2 requirement
1. Absolute calibration for radiometric responsivity	individual	required	1 year	IR1
2. Long term stability	individual	required	after every calibration	IR1
3. Stray light and out of band response	individual	required	3 - 5 years	IR2
4. Immersion factor (irradiance)	individual	required for under-water	after fore-optics modification	-
4b.Immersion factor (radiance)	individual/class-specific	required for under-water	after fore-optics modification	-
5. Angular response of irradiance sensors in air	individual	required	after fore-optics modification	IR3
6. Response angle (FOV) of radiance sensors in air	class-specific	recommended	after fore-optics modification	-
7. Non-linearity	class-specific	recommended	after repair in workshop	IR4
8. Accuracy of integration times	class-specific	recommended	after repair in workshop	IR4
9. Dark signal	individual	required	1 year	IR7
10. Thermal responsivity	class-specific	recommended	after repair in workshop	IR5
11. Polarisation sensitivity	class-specific	recommended	after repair in workshop	IR6
12. Temporal response	TBD	TBD	TBD	IR8
13. Wavelength scale	class-specific	recommended	after fore-optics modification	IR9
14. Signal-to-noise ratio	individual	recommended	1 year	-
15. Pressure effects	TBD	TBD	TBD	-

3. Provide community guidelines on radiometer cal/char schedules

4. Develop radiometer cal/char guidelines for laboratories, include an international lab exercise to test the guidelines and inter-compare results


OCR Calibration and	d characteris	ation	CCCG IOCCG Protocol Series
1. Absolute calibration for radiometric responsivity	NASA/TM-2003- Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume II:	Chapter 1.2	Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation
 Long term stability Stray light and out of band response Immersion factor (irradiance) 	Vandation, Revision 4, Volume 11: Instrument Specifications, Characterization and Calibration James L. Mueller, CHORS, San Diego State University, San Diego, California Giulietta S. Forgion, Science Applications International Corporation, Beltsville, Maryland Charles R. MeClain, Goldard Space Flipht Center, Greenbelt, Maryland	Principles of Optical Radiometry and Measurement Uncertainty	/ Volume 3: Protocols for Satellite Ocean Colour Data Validation: In Situ Optical Radiometry (v3.0)
4b.Immersion factor (radiance)5. Angular response of irradiance sensors in air	J. L. Mueller, and R.W. Austin CHORS, San Diego State University, San Diego, California Christophe Pietras Science Applications International Corporation, Beltsville, Maryland Stanford B. Hooker and Brent Holben NASA Goddard Space Filebul Center. Greenhelt, Maryland	B. Carol Johnson, ^{1,+} Howard Yoon, ¹ Joseph P. Rice, ¹ Albert C. Parr ^{1,2} ¹ Senser Science Devision National Institute of Sandards and Technology, Gaithersburg, MD, USA, ² Spore Dynamics Laboratory, Ush Star & University, Logan, UT, USA [*] Corresponding author: Email: carol.johnson@nist.gov	Authors Giuseppe Zibordi, Kenneth J. Voss, B. Carol Johnson and James L. Maeller
 6. Response angle (FOV) of radiance sensors in air 7. Non-linearity 8. Accuracy of integration times 9. Dark signal 10. Thermal sensitivity 11. Polarisation sensitivity 	Mark Miller Department of Applied Science, Brookhaven National Laboratory, Upton, New York Kirk D. Knobelspiese Science Systems and Applications, Inc., Greenbelt, Maryland Robert Frouin Scripps Institution of Oceanography, University of California, San Diego, California Ken Voss Physics Department, University of Miami, Florida	NASATTM-2002-206892, Vol. 17 For the second	Article Laboratory Intercomparison of Radiometers Used for Satellite Validation in the 400–900 nm Range Viktor Vabson ^{1,4} , Joel Kuusk ¹ , Ilmar Ansko ¹ , Riho Vendt ¹ , Krista Alikas ¹ , Kevin Ruddick ² , Ave Ansper ¹ , Mariano Bresciani ² , Henning Burnester ⁴ , Maycira Costa ⁸ , Davide D'Alimonte ⁴ , Der Publiking [Ibmuu htematond do Public et Meaures Methodoga St. 00107 27-738 Meth
 12. Temporal response 13. Wavelength scale 14. Signal-to-noise ratio 	National Aeronautical and Space administration Goddard Space Flight Space Center Greenbelt, Maryland 20771 January 2003	sailantie, Inc., Halifas, Canada Giaseppe Zilontii IRCAM/Marine Environment Unit, Igra, Italy IRCAM/Marine Environment Unit, Igra, Italy James W. Brown RSMASUniversity of Miumi, Miumi, Florida	Marco Talone® and Gluseppe Zibordi CCENTACCESS IOP Publishing Metologie 57 (2020) 02000 (7/pc) Reduction of non-linearity effects for a class
15. Pressure effects		Volume 122, Article No. 31 (2017) https://doi.org/10.6028/jres.122.031 Journal of Research of the National Institute of Standards and Technology	of hyper-spectral radiometers
 Characterisation of instruments Guidelines for laboratories Laboratory comparison 	or 15, pp. 396-3977 (2016) • https://doi.org/10.1166/A0.55.003966 Stray light effects in above-water remote-sensing reflectance from hyperspectral radiometers Marco Tainee, Giuseppe Zibardi, Ilmar Ansko, Andrew Cilve Banks, and Joel Kuusk	Immersion Coefficient for the Marine Optical Buoy (MOBY) Radiance Collectors Michael Feinholz', B. Carol Johnson ² , Kenneth Voss ³ , Mark Yarbrough ¹ , and Stephanie Flora ¹	Response to Temperature of a Class of In Situ Hyperspectral Radiometers GIUSEPPE ZIBORDI, MARCO TALONE, AND LUKASZ JANKOWSKI Joint Research Centre, European Commission, Ispra, Italy (Manuscript received 14 March 2017, in final form 4 May 2017)

OCR Calibration and characterisation

Example of the calibration history

RTU ULIA



Overview of past comparison exercises performed in support of various OC missions.

Name		Date	Irradiance	Radiance	Comments	Ancillary instrumentation
SIRREX	1	July 1992	Transfer of irradiance scale from a reference lamp to 17 FEL lamps	Integrating spheres (various sizes), lamps + plaques	Based in one lab – aim to transfer a common spectral irradiance and radiance scale from GSFC to participating labs, plaque BRDF issues reported, require improvement of instrumentation to meet the mission goals.	Shunt resistors, voltmeters
	2	June 1993	Transfer of irradiance scale from a reference lamp to 26 FEL and 1 DWX lamp	Integrating spheres (various sizes), lamps + plaques	Based in one lab – aim to transfer the scale. Irradiance results satisfactory, radiance results unsatisfactory	Shunt resistors, voltmeters
	3	Sep 1994	FEL lamps comparison	Integrating spheres (various sizes), lamps + plaques	Based in one lab – irradiance results satisfactory radiance results improved, plaque still require further investigation.	Shunt resistors, voltmeters
	4	May 1995	N/A	N/A	Based at NIST training in a common protocol for calibration of radiometers, Conversion between R (8°/h) to R (0°/45°) geometry for applied,	
	5	July 1996	NIST calibrated participants irradiance radiometers	NIST calibrated participants radiance radiometers	Based at NIST focusing on training and standard measurements protocols implementations	Instruments intercomparison in field
	6	Aug-Sep 1997	2 transfer radiometers measured irradiance at each lab	2 transfer radiometers measured irradiance at each lab	Measurements conducted by NASA personnel traveling to each participating lab.	
	7	March 1999	FEL comparison	lamp + plaques	Based in one lab focused on uncertainty in a single lab, plus rotation and polarisation sensitivity	
	8	Sep-Dec 2001	N/A	N/A	Based in 3 labs, focused on immersion factors and cosine response	
SIMRIC	1	2001	N/A	Lamp plaque, integrating sphere	7 labs measure in-house radiance source with a reference radiometer,	
	2	2002	N/A	Lamp plaque, integrating sphere	10 labs measure in-house radiance source with a reference radiometer,	
FRM4SOC	1	2017-2018	FEL comparison 14 lamps	Radiance comparison in participant laboratories using lamp + plaque	Lamp comparison and training based at NPL; radiance comparison based at each participant own lab. Irradiance results within uncertainty. Radiance saw two distinctive groups of results.	

FRM4SOC-1 Comparison of radiometers 2017 at UT, Tõravere, Estonia

Vabson, V., et al. Remote Sens. 2019, 11, 1129; doi:10.3390/rs11091129

占 EUMETSAT

Funded by the European Union

Comparison of radiometer calibration 2022

- 2 TriOS Ramses
 - 1 radiance
 - 1 irradiance
- 2 SeaBird HyperOCR
 - 1 radiance
 - 1 irradiance

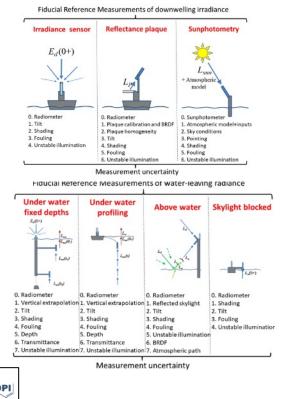
NASA/TM-2003-21621/Rev-Vol III

James L. Mueller, Guilietta S. Fargion and Charles R. McClain, Editors J. L. Mueller, Andre Morel, Robert Frouin, Curtiss Davis, Robert Arnone, Kendall Carder, Z.P. Lee, R.G. Steward, Stanford Hooker, Curtis D. Mobley, Scott McLean, Brent Holben, Mark Miller, Christophe Pietras, Kirk D. Knobelspiesse, Giulietta S. Fargion, John Porter and Ken Voss, Authors.

Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume III:

Radiometric Measurements and Data Analysis Protocols

National Aeronautical and Space administration


Goddard Space Flight Space Center Greenbelt, Maryland 20771 January 2003

A G	¢CCG
	IOCCG Protocol Series
	ogeochemistry Protocols for our Sensor Validation
Valuma 2. Droto colo (for Satellite Ocean Colour Data
	optical Radiometry (v3.0)

Authors Giuseppe Zibordi, Kenneth J. Voss, B. Carol Johnson and James L. Mueller

A Measurement Procedure for shipborne operation of the TriOS RAMSES and SeaBird/Satlantic HyperOCR radiometers to obtain Fiducial Reference Measurements (MPROC)

- Elaboration of the IOCCG and FRM4SOC-1 protocols
- In form of clear and prescriptive guidelines
- Examples of complete uncertainty analysis following FRM principles

Funded by the European Union

Royal Belgian Institute of Natural Sciences

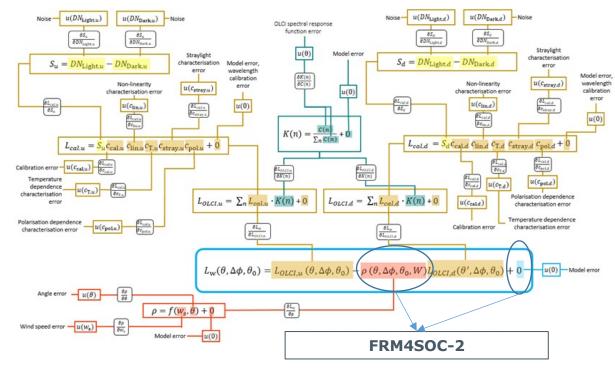
Uncertainty budgets

Elaboration of the FRM4SOC Phase 1 uncertainty budgets

- Developing end-to-end uncertainty budgets for
 - remote sensing reflectance,
 - fully normalised water-leaving radiance.
- Implementing uncertainty calculations in the CP processing chain.
- Providing easy and practical guidelines for uncertainty calculation.

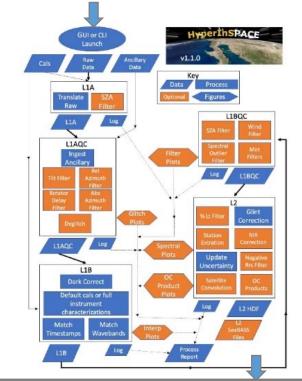
🗖 remote sensing

MDPI


Example of Monte Carlo Method Uncertainty Evaluation for Above-Water Ocean Colour Radiometry

Agnieszka Białek $^{1,*},$ Sarah Douglas 1, Joel Kuusk 2, Ilmar Ansko 2, Viktor Vabson 2, Riho Vendt 2 and Tânia Casal 3

Funded by the European Union



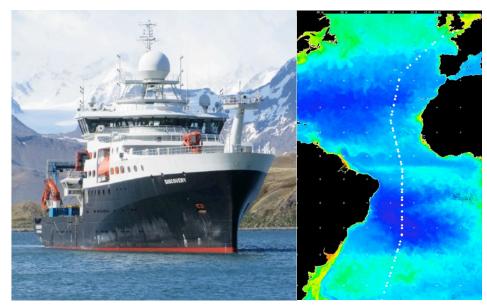
Water leaving radiance uncertainty tree diagramm. Bialek, A., et al., Remote Sens. 2020, 12, 780; doi:10.3390/rs12050780 HyperInSPACE Community Processor (HCP) for in situ data processing and uncertainty budget calculation

SI traceable measurement data from calibrated and characterised radiometers

SI traceable remote sensing reflectance *R*_{rs} with related measurement uncertainty

N. Vandenberg, M. Costa, Y. Coady and T. Agbaje, "PySciDON: A python scientific framework for development of ocean network applications," 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), 2017, pp. 1-6,

Funded by the European Union



Ocean Colour In-Situ Database (OCDB)

Commission

AMT

- Provided vital data for the duration of the SeaWiFS mission.
- Served as a developmental and intercomparison platform for selecting the most accurate ocean colour algorithm for SeaWiFS.
- AMT-1 (1995) ... AMT-30 (2023)

ΑΑΟΤ

- Long history of use for satellite ocean colour validation and development. NASA and ESA missions
- It was used throughout the ESA MERIS mission to characterise measurement uncertainties in radiometers for the validation of ocean colour products
- In situ determination of the remote sensing reflectance: an intercomparison.
- FRM4SOC-1 FICE
- Hosts permanently several OC stations.

Zibordi et al. 2002, 2004, 2006, 2012,

Field InterComparison Exercise (FICE) 11-20 July 2022,

at Acqua Alta Oceanographic Tower (AAOT), Venice, Italy.

Comparison of L_i, L_t, L_w, E_d, R_{rs}, L_{wn}

Critical review, testing, and feedback on

- Measurement protocols/procedures
- Community processor
- FRMOCnet
- Application of instrument characterisation
- Validation of
 - SI traceability;
 - Uncertainty budgets;
 - Aimed uncertainty levels.

Participants: CNR-ISAC, Helmholtz Center Hereon, NASA, NOAA, PML, RBINS, UT

Instruments:

Above water (7): TRIOS RAMSES, TriOS RAMSES G2 sun tracker (SoRAD), Seabird HyperOCR HyperSAS with PySAS robot, HYPSTAR, PANTHYR.

In-water (2): Sea-Bird HyperPro II, TriOS RAMSES floating buoy.

