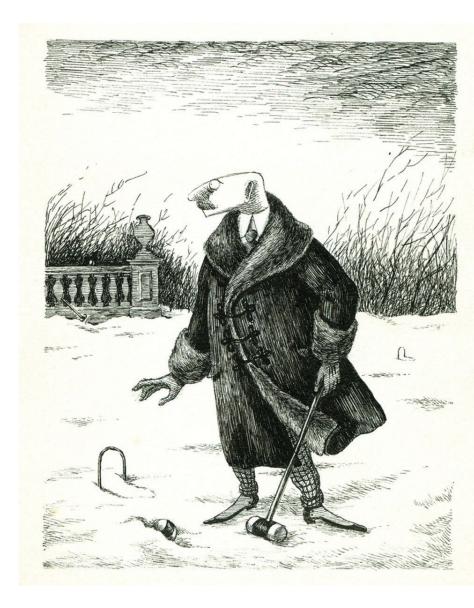
Copernicus FICE 2024

Training on In situ Ocean Colour Above-Water Radiometry towards Satellite Validation

HyperCP Hands-On

HyperCP Hands-On

Dirk Aurin NASA Goddard Space Flight Center Morgan State University



Overview

- Preamble for pySAS robot
 - prepSAS
- Goals
 - 1. Use existing sample configurations for processing a file from L0-> L2.
 - 2. Familiarize with the output data sets, figures, and reports.
 - 3. Set up a new configuration
 - 4. Explore different processing pathways (Default, Class, Full).
 - 5. Explore different glint corrections (M99, Z17) and NIR corrections (None, Flat, SimSpec).
 - 6. Practice using the low-level filters in the L1AQC Anomaly Analysis tool
- Demonstration
- Work independently on exercises 1 6

pySAS Output

- Designed for autonomous operation over extended periods of time
- Data are automatically saved in hourly files
- pySAS Output:

Life & A. M.


- pySAS cfg <date> <time>.ini
 - Data: Instrument configuration (baud rates, timeouts, pin-outs, preferred ReIAz, GPS-ship orientation, etc.)
- HyperSAS <date> <time>.bin:
 - Data: Lt, Li, Es, Tilt from Sea-Bird Scientific HyperOCR and THS sensors
 - Format: Satlantic Log File Standard (ASCII + binary)
- GPS <date> <time>.csv
 - Data: Latitude, Longitude, Elevation, Ship Heading, Accuracy
 - Format: csv
- IndexingTable_<date>_<time>.csv
 - Data: Radiometer Orientation with respect to the ship
 - Format: csv

pySAS Output

• Part of the pySAS repository*, or download at wget <u>https://github.com/OceanOptics/pySAS/tree/master/prepSAS</u>

• Install in HyperInSPACE conda environment using: pip install -r requirements.txt

- Execute:
 - # Setup parameters in setup.py

THE R. M. M. W.

- python run.py
- # Set arguments directly in shell

Run a single file python prepSAS.py -s 'HyperSAS_20201120_175620.bin' -g 'GPS_20201120_175616.csv' -t … 'IndexingTable_20201120_175616.csv' --cal 'HyperSAS_Es_20200212.sip' --cfg 'pysas_cfg_002.ini' 'UMSAS002_20201120_175620.raw

Run all files within a directory python prepSAS.py -d 'test_data/' --cal 'HyperSAS_Es_20200212.sip' --cfg 'pysas_cfg_002.ini' 'test_data'

Help python prepSAS.py -h

Sea-Bird Factory calibration bundle

Version python prepSAS.py -v

*University of Maine Ocean Optics GitHub: https://github.com/OceanOptics/pySAS/tree/master

Sample Data

Provided in the repository

Sample Data

< > Sample_Data			E
acobatcher	>	pycache >	Anc Instrument_Based_Characterizations
acolite 📄	>	Config >	Class_Basedacterizations >
AERONET	>	Data >	FidRadDB_characterization > Image: RAW >
ArcticCC	>	Logs >	FICE22_pySAS_Ancillary.sb
arcticRSWQ	>	Plots >	Sample_Data > FICE22_TriOS_Ancillary.sb
COPS_RDbase	>	Source >	BRDF_LUTelEtAl2002.nc KORUS_SOLARTRACKER_Ancillary.sb
Cops-master	>	! environment.yml	Correlation_mats.csv README_Sample_Data.xlsx
DESIS_AC	>	Experimentield_Log.xlsx	HMODISA_RSRs.txt
EXPORTSNA	>	🛃 HyperCP - Cuidelines.pdf	HMODIST_RSRs.txt
EXPORTSNP	>	LICENSE.txt	hybrid_referwith_unc.nc
📄 Faulty_shutter	>	🔛 Main.py	MERIS_RSRs_avg.txt We will focus here on the pyS
FICE22	>	🖹 make.py	DLCIA_RSRs.txt TriOS data simultaneously col
GeoPlots	>	🍰 NOSA GSC-18527-1.pdf	OLCIB RSRs.txt
getOC	>	README_bundle.md	hoTable_AO1999.hdf during FICE22.
GLIMR	>	README_configuration.md	rhoTable_AO1999.txt
📄 HyperCP	>	README_deglitching.md	Thuillier_F0.sb Ancillary files are SeaBASS for
E KORUS	>	README.md	📗 VIIRS1_RSRs.txt text files. Use these and the R
📄 learn-olci	>	📄 run_NASA_Cyanate.py	VIIRSN_IDPSv3_RSRs.txt inform you on the configuration
MATLAB_embedded	>	📄 run_NASA_EXPORTSNA.py	Water_Absorption.sb
MDN	>	📄 run_NASA_Falysis702.py	Thang_rho_db.mat
MW_algorithm	>	📄 run_NASA_FICE22.py	
ocssw	>	📄 run_sample.py	
in orm_morel	>	📄 runtest.py	
prepSAS_old	>		
PRS_QC	>		
	> 1	1	

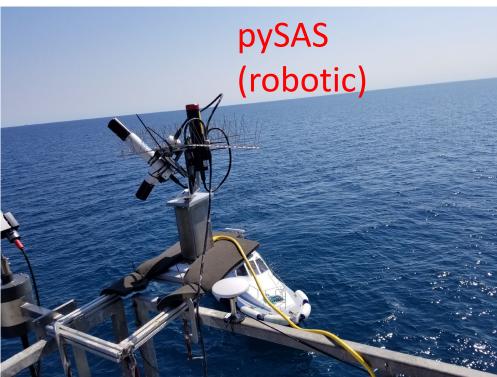
and as a set of

AS and ected

natted EADME to on of each.

First Wicket

- (Main) Establish Input/Output paths for the data
- (Main) Provide the appropriate Ancillary data file
- Process the two manually acquired TriOS files from L0 to _2
 - (Configuration):
 - L1B Default ("Factory Only") mode
 - No station extraction
 - M99 glint correction
 - SimSpec NIR offset
 - No BRDF or convolution
 - No Derived Products
- Process the autonomous pySAS data using the same settings (don't forget to switch Ancillary files)



(Artwork by Edward Gorey)

Second Wicket

4, 4, 5%

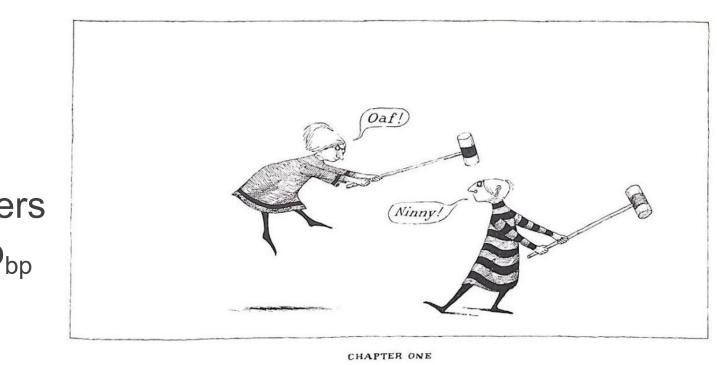
- Locate the process TriOS files
 - What percentage of L_t data were removed from each file for the L1BQC spectral filter?
 - In L2, how many spectra remained in each ensemble after the "glitter" correction was performed (retaining only the darkest 10% of L_t measurements)?

- Locate the L2 Plots
 - How do R_{rs} and E_s compare between the TriOS and the SeaBird instruments?
 - What is missing from TriOS plots? Why?
- Repeat pySAS L1BQC to L2 using station extraction.
 - Based on plots and what you know, which pySAS stations correspond to each TriOS file?

Locate the processing Reports for the pySAS and

action. s correspond to each TriOS file?

Third Wicket


- Compose a new configuration for the autonomous pySAS instrument and the manually operated TriOS triplet sample datasets
 - Import configuration and telemetry files. Use the .cal/.tdf (or .sip) files for SeaBird and the .dat/.ini files for TriOS from the appropriate Config/sample XXX Calibration folders. (These files will be copied into your new Config/your Calibration folders.)
 - Follow README description on GitHub to set each parameter in the Configuration Window sensibly
 - Process both datasets L0->L2

4 4 4

- Include f/Q BRDF, chlor_a, QWIP, and satellite convolution
- Use glint, NIR, and BRDF appropriate for optically complex waters
- Set L2 processing to obtain Derived Products for QAA $a_{\rm da}$ and $b_{\rm bp}$
- What was a_{da}(400) at Station 32?

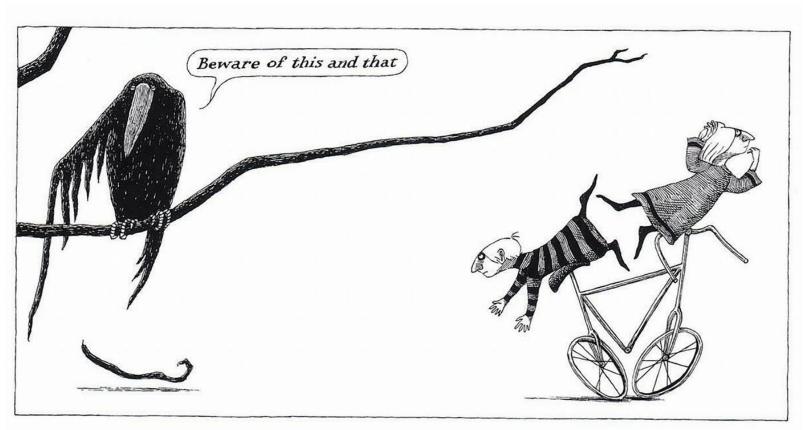
Embley and Yewbert were hitting one another with croquet mallets

Fourth Wicket

(Happenstance Theater)

- Files will need to be reprocessed from Raw or L1AQC to L2 to incorporate updated characterization in L1B.
- Add the instrument-based RADCAL (absolute radiometric calibration with uncertainty) files provided in the Sample_Data folder
- Turn off interpolation (L1B) and spectral filter (L1BQC) plotting to speed up processing
- How did your L2 results (E_s, L_i, L_t, L_w, R_{rs}) change compared to running in Default/Factory mode?

- Now change to Full-FRM
 - How did the component spectra (E_s, L_i, L_t, L_w, R_{rs}) change compared to Default and Class-based pathways?



Reprocess TriOS sample data (either modify the sample configuration provided or the one you developed) to use the Class-based pathway/mode

Fifth Wicket

- Reprocess pySAS sample data in Class-based mode with both M99 and Z17 glint corrections
 - When changing only the L2 settings, you can re-process L1BQC -> L2 for speed
 - How does the resulting R_{rs} compare between glint corrections?
- Reprocess pySAS sample data in Class-based mode in Z17 without no NIR correction and compare against processing with NIR correction (SimSpec)
 - How does the resulting R_{rs} compare between NIR offsets?

Sixth Wicket

- Launch the L1AQC Anomaly Analysis tool for the autonomous pySAS dataset
 - How long is the time series?

· 4 4. m

- Photos taken during this period are provided but named with UTC+3 hours timestamps. Adjust the format string properly to view the photos.
- What is the median Solar Zenith Angle for this file?
- Move the waveband slider to 480 nm and update the figures. With the default sigma and window settings for the *irradiance* sensor, what percentage of the shutter-open spectra in all bands are retained after low-pass filtering? Why are there so few points shown as filtered when the percentage is shown to be so high?
- Change to the skylight radiance and eliminate the erroneous shutter-dark measurements using the threshold tool.
- Change to the total water-leaving radiance and adjust the window and sigma to retain 87.5% of light values.
- Leave a sensible comment, save params, and inspect the resulting CSV file.

so Embley had to sit on the handlebars as they flew out the gate.