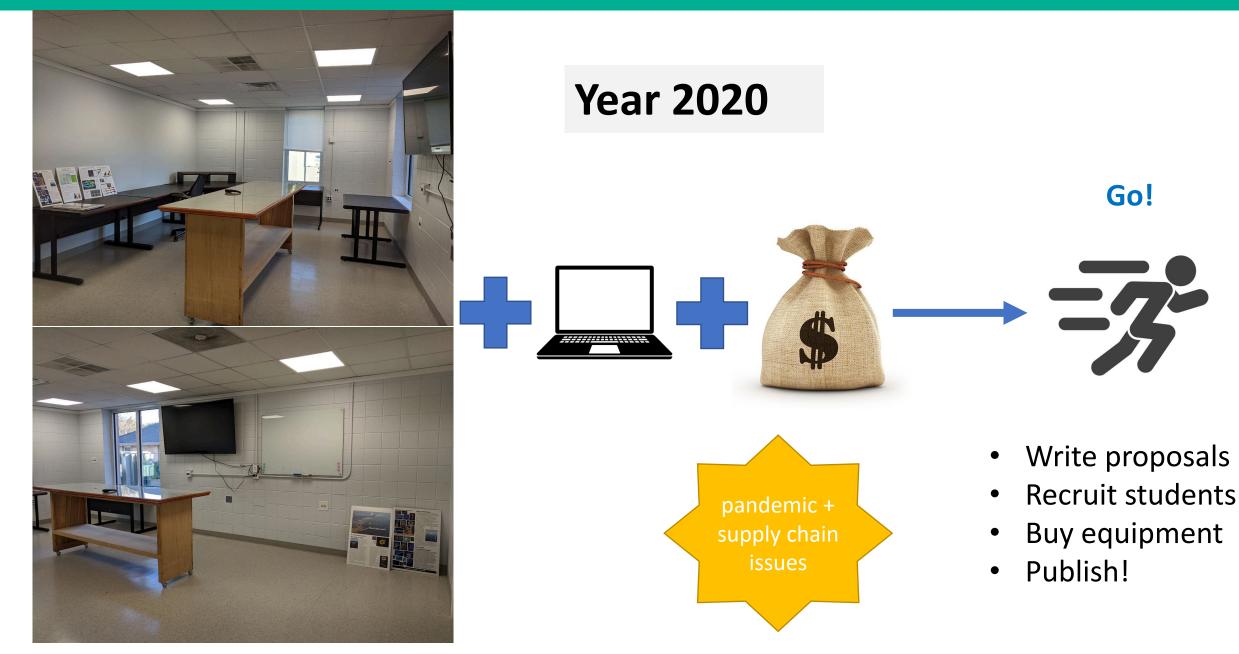


Evaluating SeaHawk Ocean Color CubeSat Data: challenges, opportunities and lessons learned

Dr. Sara Rivero-Calle Assistant Professor UGA Skidaway Institute of Oceanography


Outline

- Becoming a PI and starting a lab
- Seahawk CubeSat Mission
- Motivation to do satellite validation
- Work done by my lab:
 - In situ (South Atlantic Bight)
 - MOBY + Cross-validation,
 - AERONET OC,
 - PLOCAN gliders
- Rivero Lab instruments available

Starting a New Research Lab at UGA

SeaHawk

- Proof-of-concept project
- Demonstrate capability to <u>build</u> a lowcost ocean color sensor (HawkEye) flown aboard a CubeSat
- Provide <u>high quality high spatial</u> resolution ocean color imagery
- Launched 2018

Sustained Ocean Color Observation from Nanosatellites

OCON

Ocean Color Satellites 1978 - Today

Nimbus-7

CZCS

1978

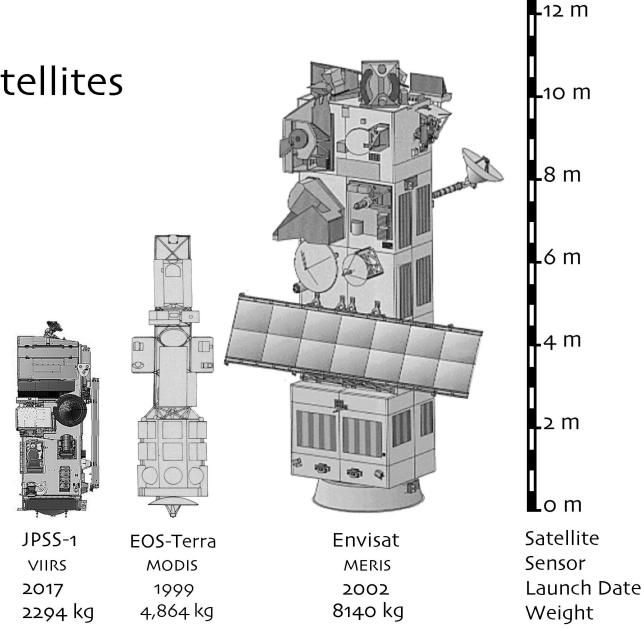
832 kg

SeaStar

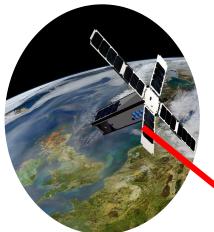
SeaWiFS

1997

309 kg

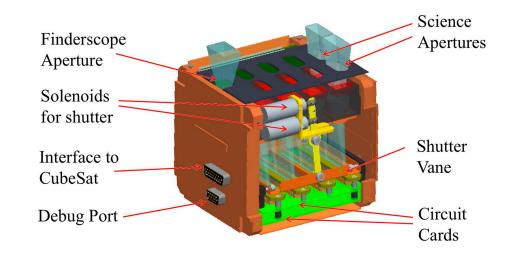

- CubeSat=Nanosatellite
- Reduced size
- Low cost
- 8 bands in the visible

SeaHawk

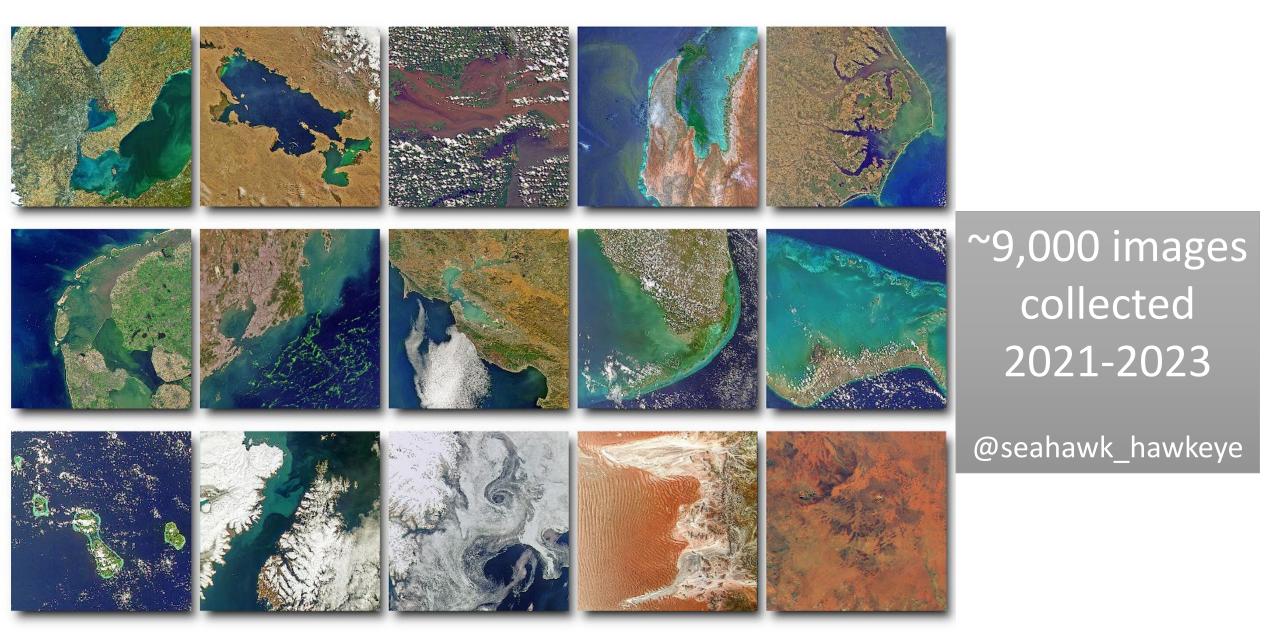

2018

5 kg

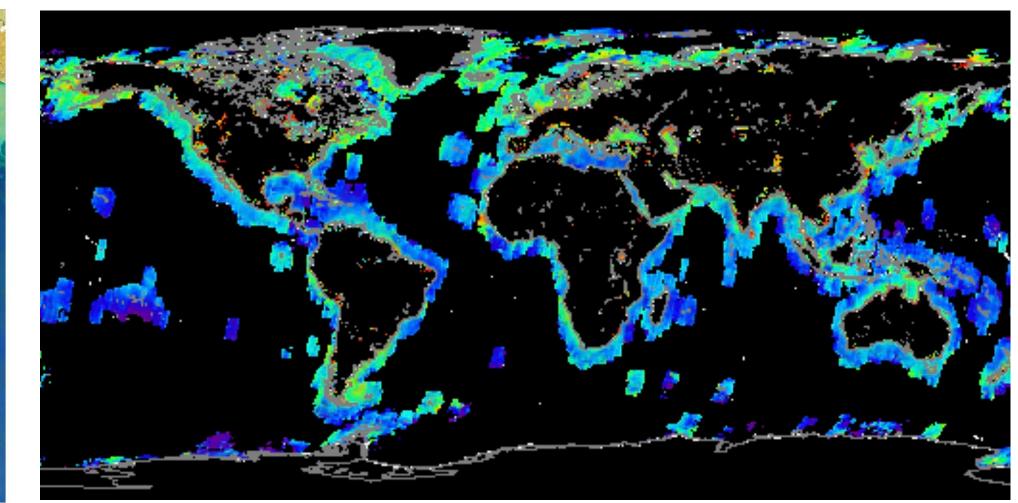
• <u>120 m spatial resolution</u>



Credit: Gene C. Feldman

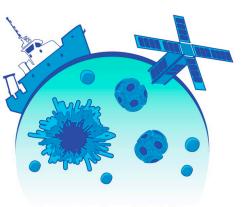

HawkEye Sensor

ULTRA- VIOLET		Band #	Wavelength (nm)	Band width (nm)	
>>	Total pigment or Chlorophyll-a	Band 1	412	20	
	1	Band 2	443	20	
		Band 3	490	20	
ш		Band 4	510	20	
VISIBLE	Atmospheric correction /	Band 5	555	20	
		Band 6	670	20	
RED	Atmospheric	Band 7	750.9	14.7	same design as SeaWiFS
NEAR INFRARED	correction (clear ocean)	Band 8	865	40	except for band 7


SeaHawk-HawkEye Mission

SeaHawk-HawkEye Mission

Evaluating its Performance



Chl-a a collage of SeaHawk-HawkEye data 2021-2023

Original cal-val plan

- Lunar Calibrations
- Vicarious calibration: MOBY
- Cross-validation with NASA OC missions

Bio-Optical and Satellite **Oceanography Lab**

Fieldwork: South Atlantic Bight

- Validation with *in situ* data
- Regional Algorithm Development
 Comparison with MODIS+OLCI+VIIRS
 Glider collaboration
 AERONET OC

Getting the Instruments

STARTUP PURCHASES

SpectraVista Radiometer

+ spectralon panel

(~\$18k)

Hyperpro II +T, S, + triplets (bb, chla, PE, PC)

(~\$105k)

Proposed Equipment in May 2022

SeaBird HyperSAS (~\$60k) Computer Node (~\$10k)

Water Quality and Satellite Data Validation in Coastal and Inland Waters Workshop (June 2022)

Giuseppe Zibordi Juan Gossn Igor Igoshawara John Schalles... HyperCP!

GORDON AND BETTY

TRiOS G2 + SoRAD (~\$30k + ~\$5k) ordered Fall 2022

1. In situ data collection 2022-2023

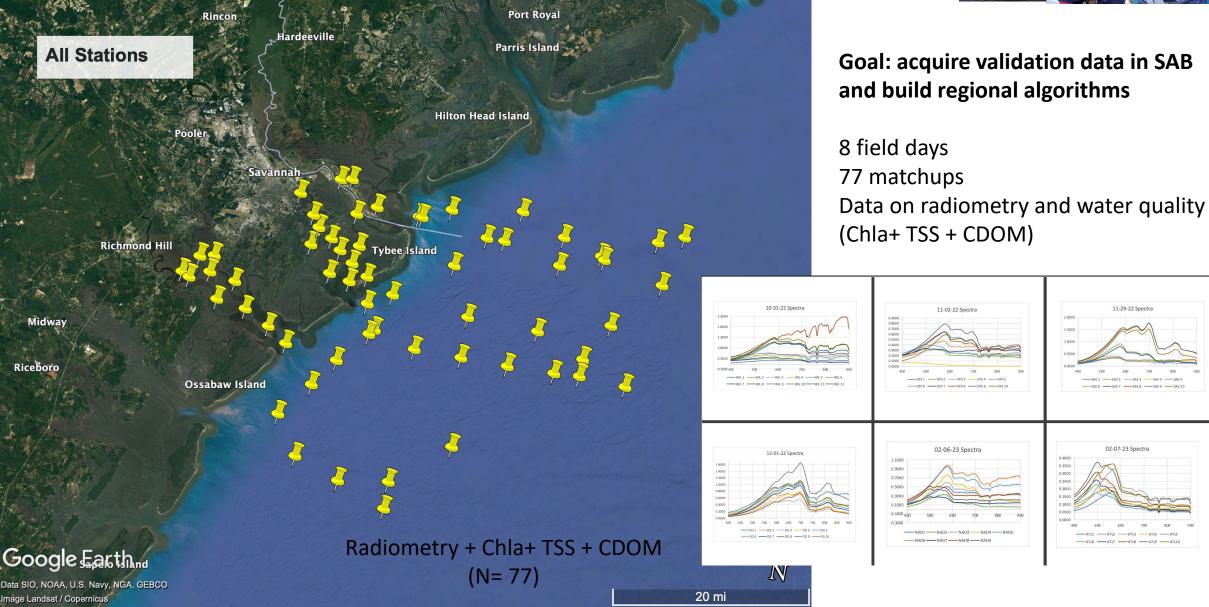
Collected:

SVC radiometry and water samples

Wind

Temp and salinity of water with HANA instrument (~1.5k)

In the lab: a_{CDOM}, chlorophyll a concentration, suspended sediments



1. In situ data collection SAB

11-29-22 Spectra

02-07-23 Spectra

1. In situ data collection SAB

Unexpected Delays....

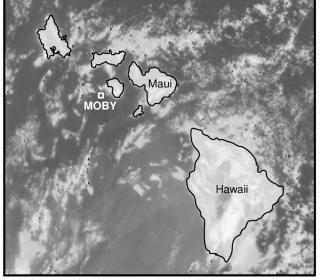
- Supply chain issues
- HyperSAS discontinued
- Issues buying from TRIOS
- R/V Savannah mid life refit
- R/V Blanton broke down
- SeaHawk increasing revisit time
- SeaHawk instabilities
- Cloud cover over the summer
- Technician moves

MANY lessons learned....

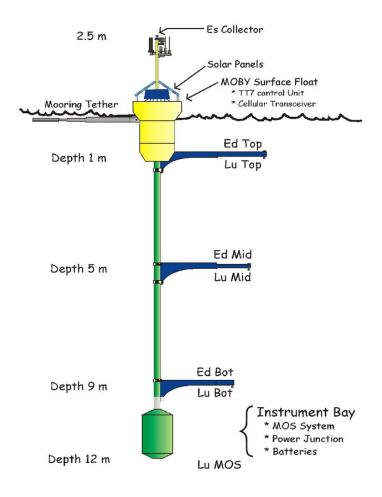
1. In situ data collection SAB

Achievements:

- Acquired equipment and supplies
- Developed lab protocol for radiometry
- Developed lab protocol for water sample collection and processing (chla, TSS, aCDOM)
- Intercomparison with Dr. John Schalles (GLORIA)
- Generated Matchups with SeaHawk
- Produced SeaBASS files
- Trained students and technicians



2. The Marine Optical BuoY (MOBY)



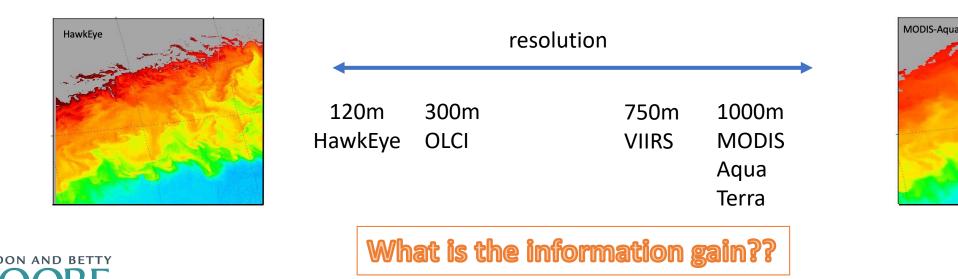
GORDON AND BETTY

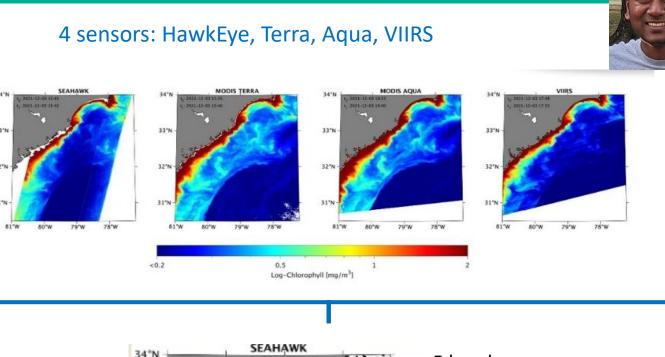
F Ο U Ν D Α Τ Ι Ο Ν

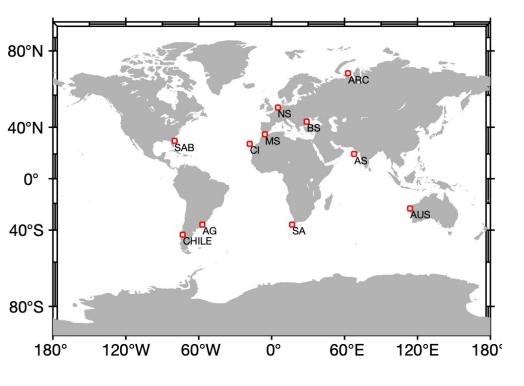
MOBY station in Hawaii

Only 2 matchups

Why?

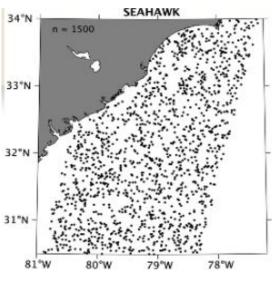

- Clouds
- Conflict with downlink of imagery in Alaska ground station


Masud-Ul- Alam et al., in prep. "SeaHawk Low-Cost Ocean Color CubeSat Produces High Spatial Resolution and High-Quality Data: A Comparison with NOAA-20 VIIRS, NASA MODIS-Terra and MODIS-Aqua" (in prep.)



QUESTIONS

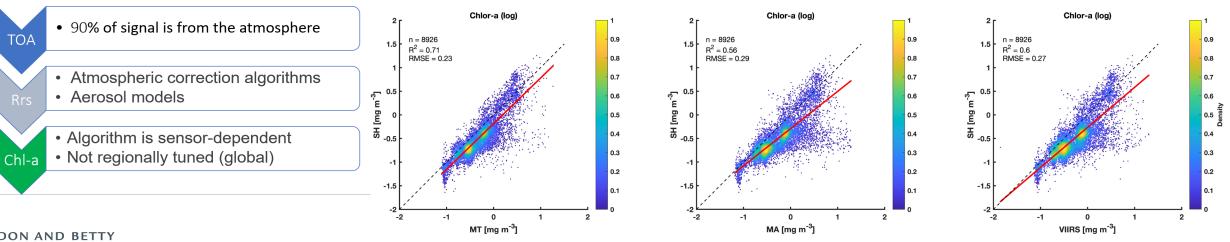
 Can we evaluate SeaHawk-HawkEye Performance on a GLOBAL SCALE?
 Will our matchups improve or worsen with SeaHawk-HawkEye HIGHER SPATIAL RESOLUTION???



First SeaHawk performance study 11 locations + MOBY in situ data

Masud-Ul- Alam et al., in prep. "SeaHawk Low-Cost Ocean Color CubeSat Produces High Spatial Resolution and High-Quality Data: A Comparison with NOAA-20 VIIRS, NASA MODIS-Terra and MODIS-Aqua" (in prep.)

- 5 bands
- 3 processing levels
- 5 statistical methods:
 - R²
 - bias,
 - RMSE,
 - d-index
 - CCC


> 20% 20% or less

Top of	the atmo	osphere	TOA) reflectance (% difference)								
Bands	MT-SH	MA-SH	VIIRS-SH	MT-MA	MT-VIIRS	MA-VIIRS					
412 nm	-5	0	-5	5		4					
447 nm	-4	LĘ	SS 1	char	1 / 9	/0					
488 nm	-5										
555 nm	-7										
670 nm	-18	-3	-4	15	14	200					

Re	emote ser	nsing ref	lectance	(Rrs) (%	differen	ice)
Bands	MT-SH	MA-SH	VIIRS-SH	MT-MA	MT-VIIRS	MA-VIIRS
412 nm	66	60	20	-6	-47	-40
447 nm	10	7%	orle	ess -7	-2	Ę
488 nm	8	2	3	-7		
555 nm	-5	10	7	15	12	-3
670 nm	117	131	118	23	1	-21

Chlorophyll a

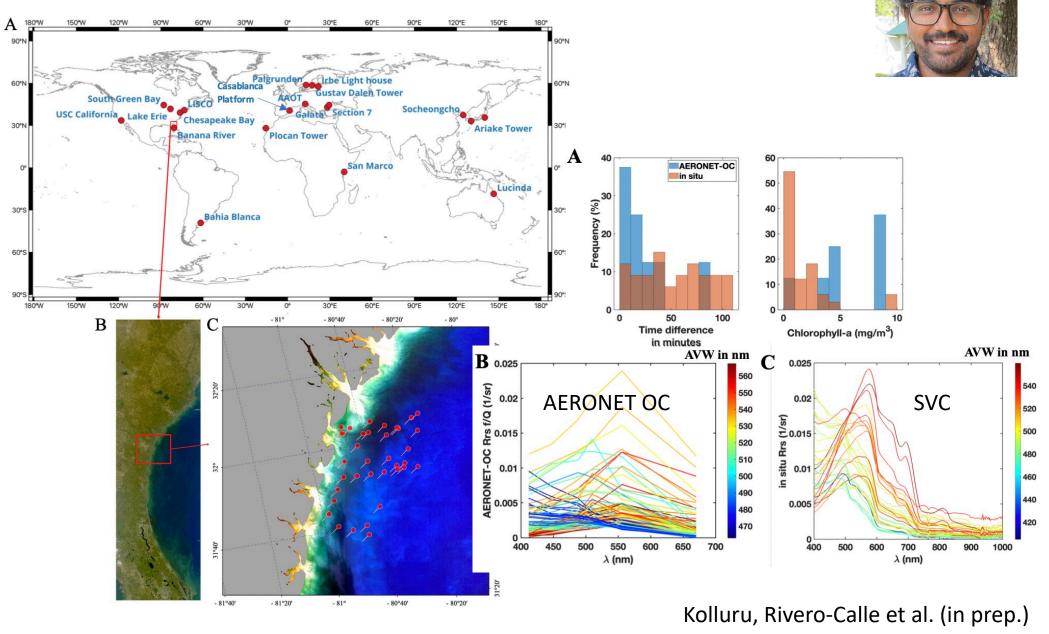
GORDON AND BETTY **MOORE** FOUNDATION

Results

Masud-UI- Alam et al., in prep. *"SeaHawk Low-Cost Ocean Color CubeSat Produces High Spatial Resolution and High-Quality Data: A Comparison with NOAA-20 VIIRS, NASA MODIS-Terra and MODIS-Aqua"* (in prep.)

3. Cross-comparison and MOBY

Conclusions and Lessons Learned:


- Difficult to find concurrent imagery for all sensors
- HawkEye performs comparably to other OC sensors
- Time of overpass, Geometry and Atmospheric Correction play an important role
- Very location-dependent
- worse performance in the blue (412nm)band for ALL sensors
- Chlorophyll comparison is similar among sensors

4. AERONET OC + SVC

GORDON AND BETTY MOORE FOUNDATION

2. AERONET OC : Global Network

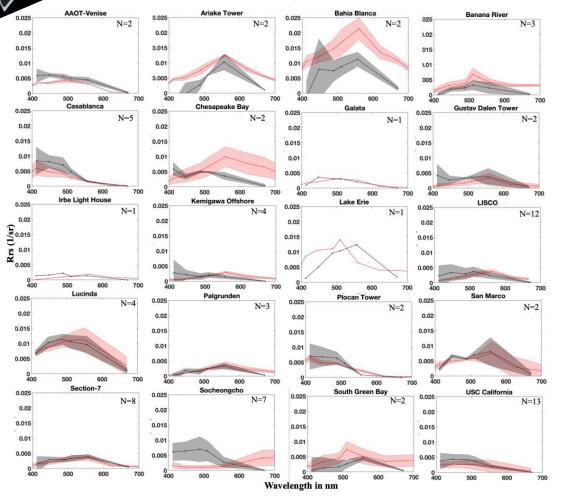
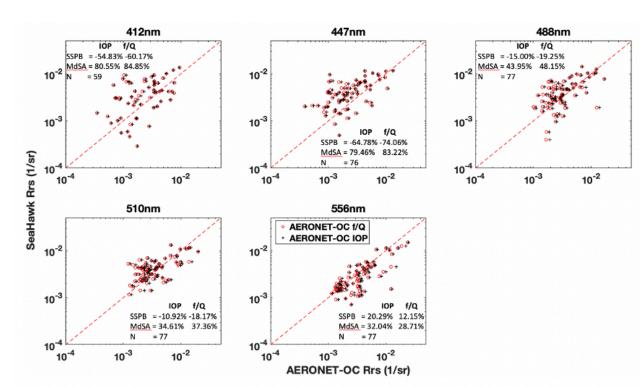



Fig. 3. Comparisons of mean SeaHawk R_{IS} and AERONET-OC R_{IS} (f/Q) data. The variability in the mean spectra of SeaHawk R_{IS} in a black curve with a shaded gray area representing one standard deviation. The equivalent AERONET-OC R_{IS} (f/Q) are shown in red. Galata, Irbe Light GORDON AND BETTY, and Lake Erie have only one match-up point, hence shaded area was absent.

FOU

DATION

AERONET-OC

Fig. 4. Scatter plots between SeaHawk Rrs and AERONET-OC Rrs (f/Q and IOP) at five wavelengths for 77 matchups over the twenty locations. Statistics presented in each subplot correspond to SeaHawk Rrs and AERONET-OC IOP Rrs (f/Q and IOP).

Kolluru, Rivero-Calle et al. (in prep.)

4. AERONET-OC: Georgia

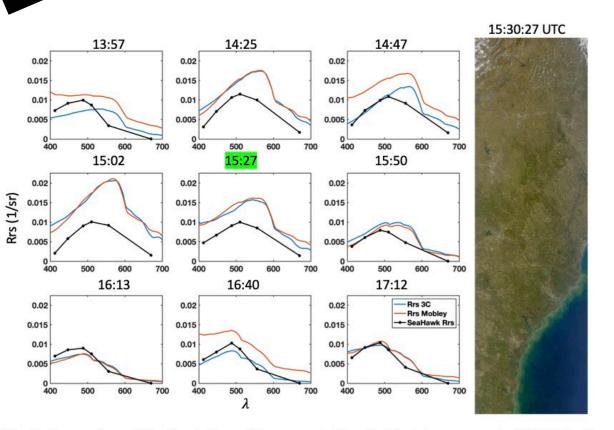


Fig. 5. Comparison of SeaHawk B_{rs} and hyperspectral *in situ* B_{rs} data processed with Mobley's and 3C method acquired on 06 Feb 2023 in coastal Georgia, USA. The title of each subplot indicates the local time in Hours and Minutes. The highlighted time was closest to SeaHawk (true color image on the right) overpass, i.e., at 5:30 local time.

GORDON AND BETTY

ATION

Rivero Lab

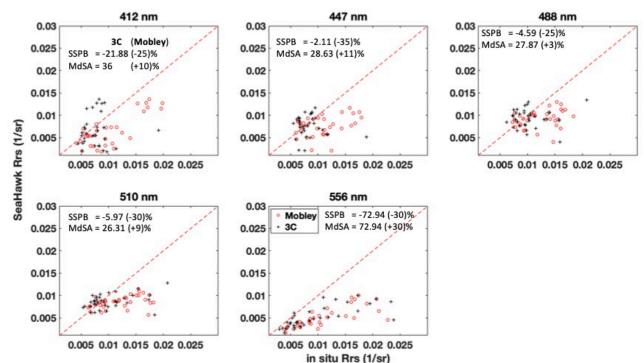
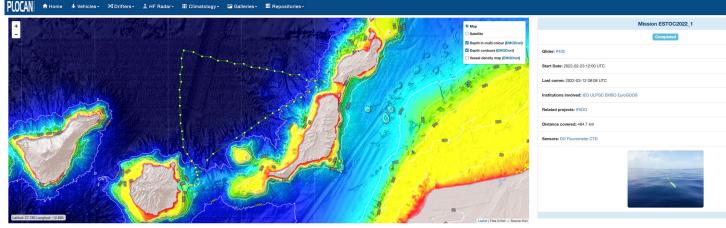
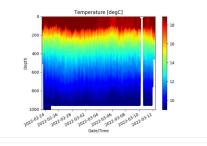


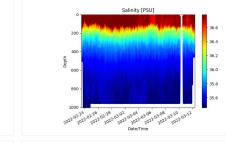
Fig. 6. Scatter plots between SeaHawk Rrs (L2gen) and *in situ* Rrs (Mobley) at five wavelengths for 34 matchups.

Kolluru, Rivero-Calle et al. (in prep.)

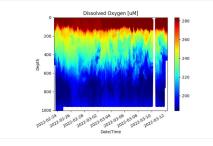
Conclusions and Lessons Learned:


- AERONET-OC was very useful!
- SeaHawk performed well
- Disagreement between sensors
- Blue region issue
- Atmospheric correction is a big issue
- Complex waters are difficult to work with


5. PLOCAN GLIDERS


Collaboration with PLOCAN

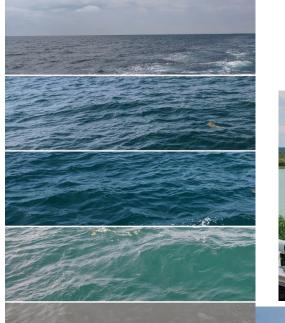
- Compare chl-a from gliders with SeaHawk + OLCI
- Explore the vertical component using gliders



Scatter plots Galler

Sontact U

ESTOC time series E-impact project


PLOCAN Plataforma Oceánica de Canarias

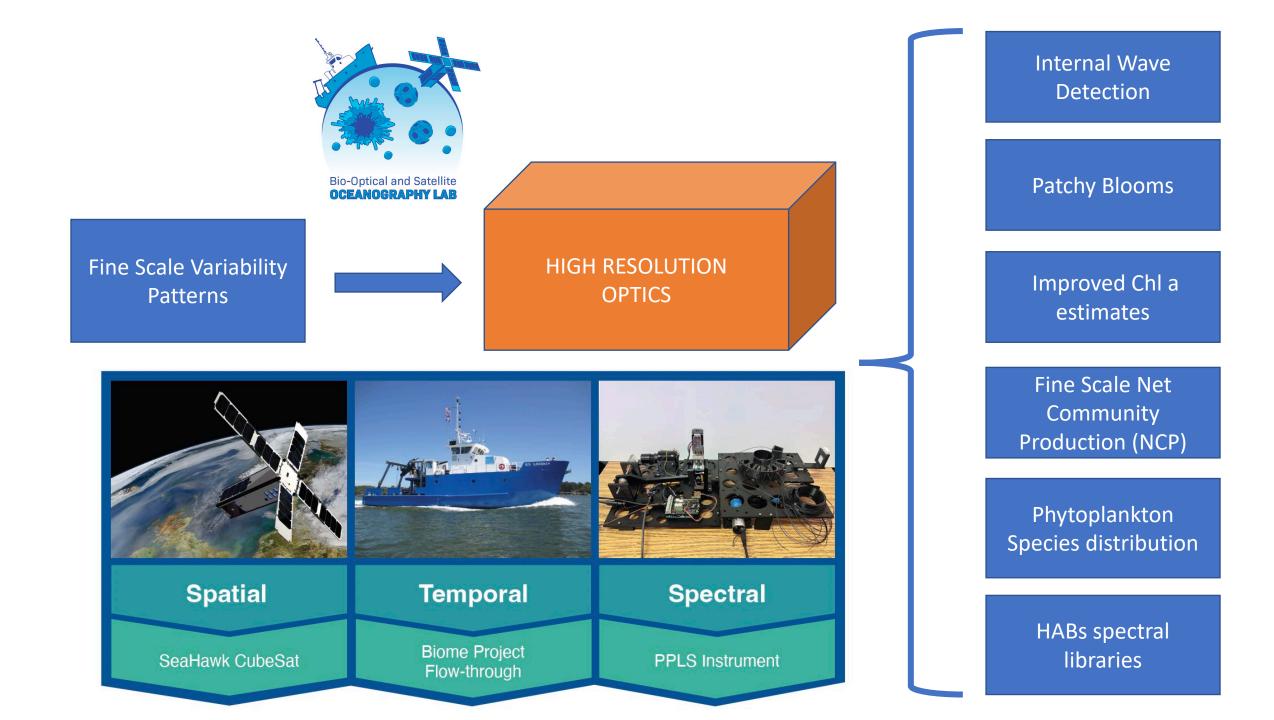
Lowin , Rivero-Calle, et al. (in prep.)

Future Plans

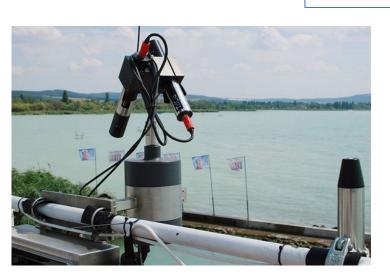
Trios G2 + So-Rad SVC + Hyperpro II

Regional Algorithms for:

 Net Community Production (NCP)



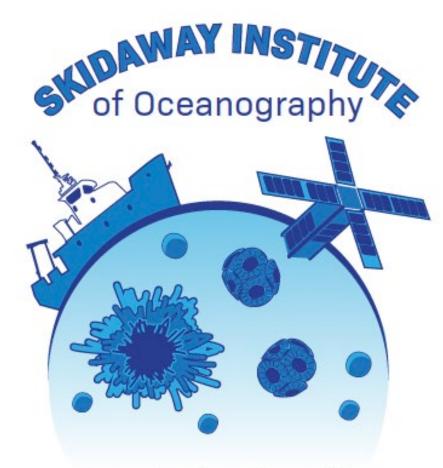
Using the RV Savannah as ship of opportunity



Total Suspended Sediments (TSS)

Rivero Lab Instruments

TRIOS G2 + SoRAD

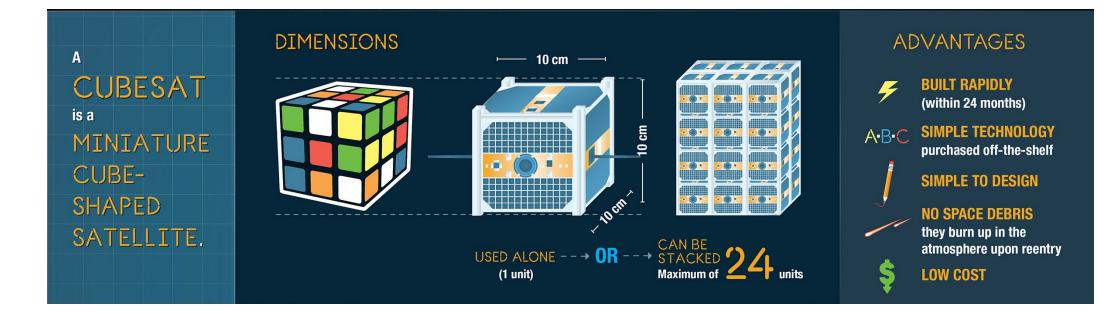

SpectraVista Radiometer

Hyper-bb

Bio-Optical and Satellite
OCEANOGRAPHY LAB

Grazie!

Dr. Sara Rivero-Calle rivero@uga.edu



Lunar calibrations

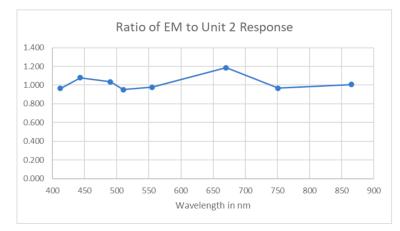

Figure One: Relative Sensitivity of EM unit to Unit 2

Figure Two: Image of Moon from Lunar Calibration in Orbit using Unit 2

Figure Three: Image from Ground-Based Lunar Calibration using EM

Using that data, in Table One I show the signal counts (ADU) that were expected from the orbital collection, assuming an identical moon phase and such as in 2017.

Table One: Expected Signal Counts

Lunar Cal		EM Total Counts	EM Peak		Unit 2 Peak	Expected	Expected
		per ms	Pixel	Ratio,	Pixel	Peak	Total
Band	Exposure Time	at 35 C	Counts/ms	EM/Unit 2	Counts/ms	Counts	Counts
1	4.1	1.308E+06	1647	0.965	1707	6999	5.557E+06
2	4.1	2.112E+06	2659	1.080	2463	10097	8.017E+06
3	4.1	3.595E+06	4528	1.035	4373	17929	1.424E+07
4	4.1	3.487E+06	4392	0.951	4617	18931	1.503E+07
5	3.4	4.310E+06	5428	0.979	5547	18858	1.497E+07
6	3.4	4.722E+06	5947	1.185	5017	17057	1.354E+07
7	4.1	2.363E+06	2976	0.968	3074	12602	1.001E+07
8	4.1	3.174E+06	3998	1.007	3970	16275	1.292E+07

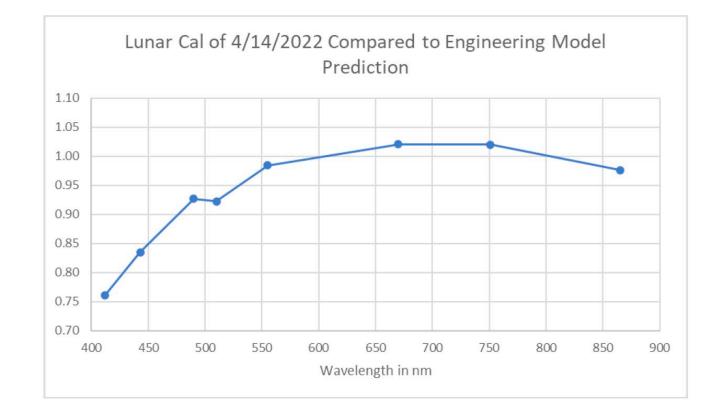
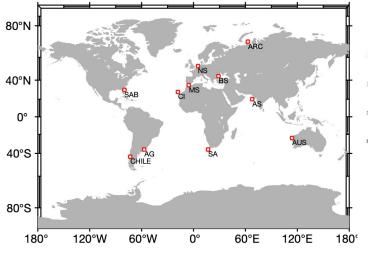
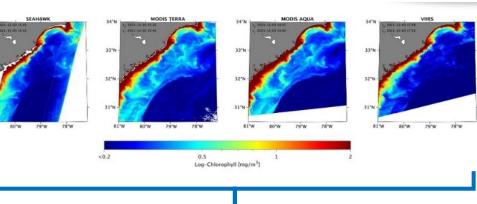

In the image of 4/14/2022 the moon was quite a bit away from full, with a phase angle near 36 degrees, in order to simplify the pitch maneuver in orbit. Figure Two shows the resulting image from Band 4, and Figure Three the ground-based image.

Figure Two: Image of Moon from Lunar Calibration in Orbit using Unit 2

Figure Three: Image from Ground-Based Lunar Calibration using EM




Table One: Preliminary Instrument Degradation Model

Band	Wavelength	Degradation
1	413	0.780
2	447	0.842
3	488	0.935
4	510	0.924
5	557	0.964
6	670	1.000
7	751	0.991
8	866	0.959

4 sensors: HawkEye, Terra, Aqua, VIIRS

5 bands

• R²

bias,

• CCC

RMSE,

d-index

٠

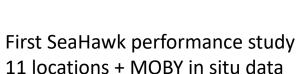
.

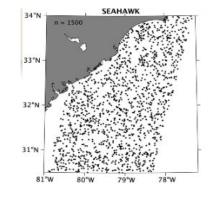
•

3 processing levels

5 statistical methods:

Top of the Atmosphere: *d-index*


	MODIS-	MODIS-	
Location	Terra	Aqua	VIIRS
Rhot-412nm	0.8049	0.5351	0.6049
Rhot-447nm	0.8049	0.5351	0.6049
Rhot-488nm	0.8049	0.5351	0.6049
Rhot-555nm	0.7799	0.5301	0.5833
Rhot-670nm	0.8049	0.5351	0.6049

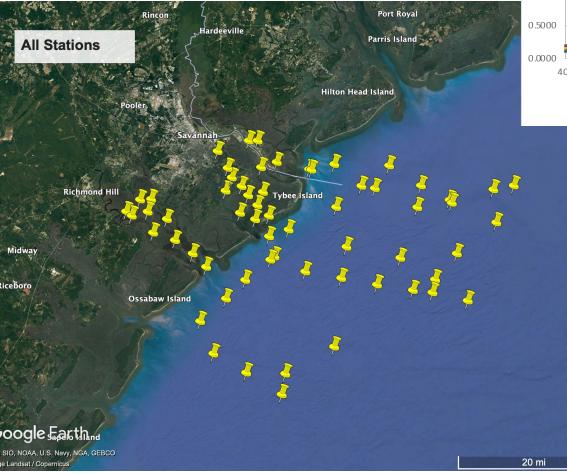

Rrs *d-index*

Bands	MT	MA	VIIRS
Rrs-412nm	0.57	0.53	0.58
Rrs-447nm	0.63	0.55	0.56
Rrs-488nm	0.70	0.62	0.60
Rrs-555nm	0.68	0.64	0.63
Rrs-670nm	0.46	0.41	0.43

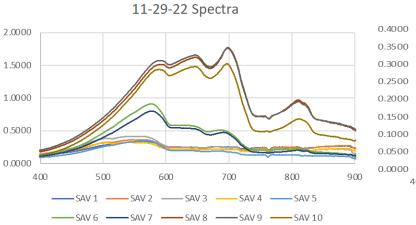
Chlorophyll a

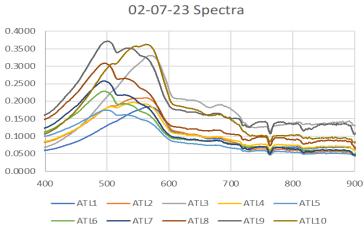
Stats	МТ	MA	VIIRS		
RMSE	8.73	4.72	5.02		
<i>d</i> -index	0.31	0.4	0.33		
ССС	0.59	0.77	0.58		
Bias	-0.32	-0.75	-0.11		
R-sq	0.38	0.42	0.4		

Masud-Ul- Alam et al., in prep. "SeaHawk Low-Cost Ocean Color CubeSat Produces High Spatial Resolution and High-Quality Data: A Comparison with NOAA-20 VIIRS, NASA MODIS-Terra and MODIS-Aqua"


Legend Min Max

Fieldwork in SAB


8 out of 24 completed outings


61 matchups

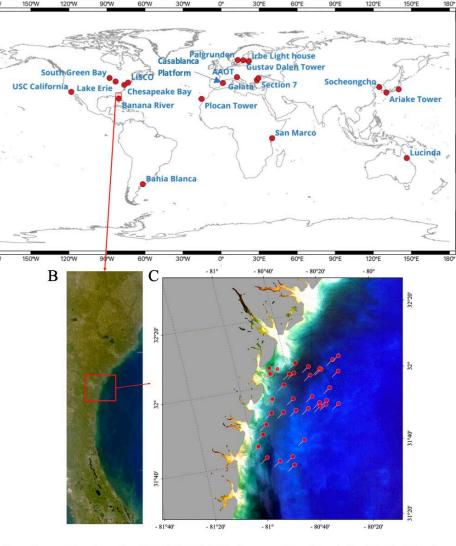
Collecting data on radiometry and water quality Goal: build regional algorithms

Remote Sensing Reflectance (Rrs)

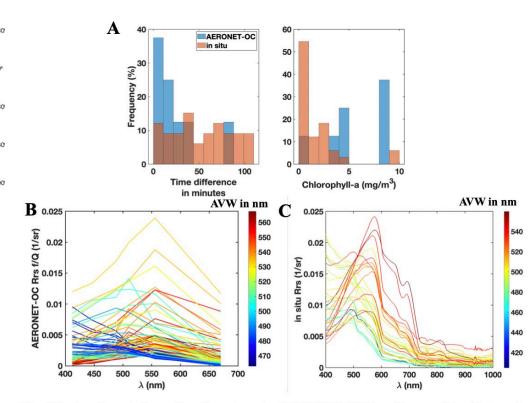
Chlorophyll a, suspended sediments and colored dissolved organic matter

	Chl-a	TSS	CDOM
Min	0.15	13.84	0.027
Max	9.65	64.82	1.52
Mean	2.93	28.43	0.43
Sd	2.39	9.53	0.35
CV	0.816	0.335	0.797

Emma Goldsmith – UGA tech



2. AERONET OC + SVC



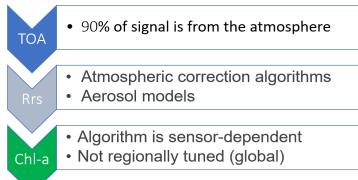

Fig. 2A. Ancillary information from twenty AERONET-OC locations and *in situ* location Georgia coastal waters, USA; Time difference in minutes indicates the difference between *situ*/AERONET-OC measurements and SeaHawk acquisition time. **B**. $R_{rs}(\lambda)$ AERONET (f/Q) spectra used in the study (N=78) with colors indicating Apparent Visible Wavelen (AVW in nm) **C**. Above-water *in situ* hyperspectral R_{rs} spectra from Georgia coastal wa

Fig. 1A. Location of the twenty AERONET-OC sites used in this study, B. SeaHawk over over Georgia coast, 29 November 2022, C. Sampling locations (N=34) concurrent with SeaHawk overpass over Georgia coast, USA.

Kolluru & Rivero-Calle (in prep.)

Sources of uncertainty

GORDON AND BETTY

FOUNDATION

Top of the Atmosphere: *d-index*

	MODIS-	MODIS-	
Location	Terra	Aqua	VIIRS
Rhot-412nm	0.8049	0.5351	0.6049
Rhot-447nm	0.8049	0.5351	0.6049
Rhot-488nm	0.8049	0.5351	0.6049
Rhot-555nm	0.7799	0.5301	0.5833
Rhot-670nm	0.8049	0.5351	0.6049

Rrs *d-index*

Res						-							Bands	MT	M	A	VIIRS
					20° < 20% or les								Rrs-412nm	0.57	0.	53	0.58
Top of				ofic stores				Rer	mote	sensin	a refl	ectand	e (Rrs) (% diffe	erence	e)	0.56
TOP OT	the ath	nosphere	(10A) r	eflectanc	e (% am	rerence)				Legend	V III I	-	NI 3-4001111	0.70	0.	52	0.60
Bands	MT-SH	MA-SH	VIIRS-SH	MT-MA	MT-VIIRS	MA-VIIRS	_	Bands	MT-SH	MA-S	Max SH	VIIRS-SH	Rrs-555nm MT-MA	0.68 MT-VII	R <mark>S M</mark> /	54 \-VIIR\$	0.63
412 nm		-5	0	-5		-		412 nm		66	60		20	-6	-47	-4	<u>0.43</u> 40
447 nm		-4 L E	55	tha		/0		447 nm		1079		or	ess	-7	-2		5
488 nm								488 nm		8	2		3	-7			lirs
555 nm		-7 -7	2	-7	5	0		555 nm		-5	10		7	15	12		5.02 -3).33
670 nm	-	18 -	3	-4 1	5 1	4 <mark>20</mark>	ost Oc	e 670 inm or C		117	131	1	18	23	1	_	21 ^{).58}
ON AND E	ΒΕΤΤΥ	Produces F	liah Spat	ial Resolut	tion and I			a: A Compai				•	Bias	-0.32	-0.7	1	-0.11
SORE NOAA-20 VIIRS, NASA MODIS-Terra and MODIS-Aqua" (in prep.)										R-sq	0.38	0.4	2	0.4			

1. Outline