Copernicus FICE 2024

Training on In situ Ocean Colour Above-Water Radiometry towards Satellite Validation

ThoMaS - a Tool to generate Matchups of OC products with S-3/OLCI

Juan Ignacio Gossn EUMETSAT JuanIgnacio.Gossn@eumetsat.int

Collection of the second secon

- 1. What's ThoMaS? Scope
- 2. Some background
- 3. Usage
- 4. Pre-requisites
- 5. Getting the code
- 6. Setting the environment
- 7. Required inputs
- 8. Run the code: examples

copernicus.eumetsat.int

ThoMaS is a toolkit developed to create **matchups** of biogeophysical **insitu data** with **satellite ocean colour products** from **Sentinel-3 OLCI (S3/OLCI)**.

in SeaBASS format

Standard products from NASA's OBPG also supported Others easily configurable, if netCDF or series of netCDFs After running ThoMaS, you will get:

- → Insitu data "transformed" to match satellite (spectral convolution, band-shifting, BRDF...).
- → Satellite data (L1B TOA radiance or L2 BOA water reflectance) from EUMETSAT Data Store and NASA OBPG (reprocessed/operational) matching spatially/temporally your insitu.
- → Extractions of satellite data centred at lat/lon of insitu of user-defined size (3x3, 5x5..).
- → Statistics of extractions following EUMETSAT's or any user-defined matchup protocol.
- → Merging of simultaneous (spatially-temporally) insitu-satellite pairs, temporal interpolation, and statistics of matchups.

\rightarrow Outputs:

- → NetCDF 4 files: SatData, minifiles, Extraction Data Base files, In situ Data Base file, Matchup Data Base files.
- → CSV: summarizing satellite extraction statistics and matchup statistics.
- → **PNG**: Standardised output plots.

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

copernicus.eumetsat.int

1. Motivation for having ThoMaS

- copernicus.eumetsat.int
- 1. Well documented, suited also for a first approach to the matchup exercise for those who are new to the intricacies of the matchup steps.
- 2. It's publicly available, free and open to scrutiny: it serves for the purpose of converging to a standard matchup practice.
- 3. It supports the most commonly used matchup protocols in the OC community.
 - → e.g. of existing ones: EUMETSAT's, Bailey & Werdell 2006, Zibordi 2009, Copernicus SVC_VIS
 - \rightarrow Versatile: new matchup protocols can be easily added via configuration files.
 - \rightarrow It contains an easy syntax to implement quality flags based on simple relations among products.
- 4. It deals (under some assumptions) with propagation of uncertainties to the performance metrics (using a Monte-Carlo approach).
- 5. Already supports some of the most commonly used OC satellite missions
 - → Currently supports Sentinel-3 (standard) L1B, L2, MODIS L2 (standard), VIIRS L2 (standard) and SeaHawk L2 (standard).
 - → Versatile: new types of satellite products can be easily added via configuration files (depending on mission, processor and processing baseline).

1. Some disclaimers: ThoMaS is just a baby!

copernicus.eumetsat.int

- 1. The policy of garbage-in garbage-out applies to ThoMaS: you must know well your insitu data, the satellite product, and make sure that you are comparing "apples" to "apples". Also, that your satellite pixels are sufficiently away from land, and rationally choose your extraction size, time difference tolerance, among many others.
- 2. ThoMaS does not deal with issues regarding spatial and temporal collocation of insitu and satellite data beyond very standard QC (e.g. a maximum time tolerance window, a choice of window size, and a simple temporal interpolation). This means that the problem of spatial and temporal autocorrelation of the Rrs signal (and any other OC product) is not yet dealt within ThoMaS.
- 3. ThoMaS cannot still compute match-up statistics of a given insitu-satellite set with varying satellite extraction sizes.
- 4. The uncertainty of the satellite component is only based on the inter-pixel variability (pixel-by-pixel uncertainties in the satellite component are still ignored in ThoMaS).
- 5. The uncertainties of the BRDF step are not propagated. Only Morel approach available. Lee 11 coming soon
- 6. ThoMaS won't do an A/C of your satellite data!
- 7. Many other disclaimers (working on many of these \odot), but I hope it still proves useful!
- 8. Many people use it just for downloading the satellite data matching their in situ and performing the extractions.

2. Some background: match-ups

• What is a match-up according to chatGPT?

Of course we have much more to define... and take care of...

copernicus.eumetsat.int

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

2. Some background: match-ups

- copernicus.eumetsat.int The EO data are in practice rarely fully traceable, for instance, because fundamental calibrations done in the laboratory prelaunch cannot be repeated in space.
- Consequently the **comparison against reference measurements** in a validation exercise is often the only way to link the EO data back to an agreed standard.

[Loew et al. 2017]

x = "reference" measurement (in situ) ux = insitu uncertainty

y = EO measurement (satellite) uy = satellite uncertainty

Representativeness

The extent to which a set of measurements taken in a given space-time domain reflect the actual conditions in the same or different space-time domain [Nappo et al., 1982]

Matchup protocols in OC deal (still sub-optimally) with this...

2. Some background: match-ups

copernicus.eumetsat.int **Definition of Rrs** $R_{
m rs}\left(heta,\phi,\lambda
ight)\equivrac{L_w\left({
m in\,\,air}, heta,\phi,\lambda
ight)}{E_d\left({
m in\,\,air},\lambda
ight)}$ (sr^{-1}) . S3A_OLCI_L2_IPF_OL_L2M.003_FR_EUMETSAT_standard_L2_3x3_MOBY N=132 0.018 slope=0.651intercept=0.00403 $L_{w}(\theta, \phi, \lambda)$ R2 = 0.626 $E_d(\lambda)$ 0.016 MdD=-0.000571 MdAD=0.00111 Rrs_400.0 [sr-1] 0.017 MdPD = -4.55MdAPD=8.900 Web Book, Mobley, Boss & Roesler Band-shifting (to pair multispectral to multispectral) Satellite -**BRDF** correction: $R_{RS}^{e}(\lambda_{i} \rightarrow \lambda_{t}) = R_{RS}^{f}(\lambda_{t}) \frac{R_{RS}(\lambda_{i})}{R_{RS}^{f}(\lambda_{i})}$ Melin & Sclep 2015 supported in ThoMaS 0.008 D'Alimonte et al. Morel et al. 2002 supported in ThoMaS Spectral convolution 0.016 0.008 0.024 0.010 0.012 0.028 Ed In situ Rrs_400.0 [sr-1] Are we comparing with ?? \rightarrow What is the definition of Rrs? $R_{rs} \times S_B$ Lw × SB $E_d \times S_B$ S_B \rightarrow Are these two compatible "spectrally"? \rightarrow convolution/band-shifting \rightarrow Are these two compatible "directionally"? \rightarrow BRDF correction Burggraaff 2020

9

(opernicus

2. Some background: match-ups (spectrally matching insitu to satellite)

copernicus.eumetsat.int

Some assessment of uncertainty supported in ThoMaS

2. Some background: match-ups (spectrally matching insitu to satellite)

Uncertainty propagation after convolution:

copernicus.eumetsat.int

Convolution: measurement equation to obtain Rrs at (multispectral) band B [SRFs and Rrs to a common wavelength grid]

$$Rrs[\lambda_B] = \sum_{i=1}^{N} Rrs[\lambda_i] \cdot \frac{SRF_B[\lambda_i]}{\sum_{i=1}^{N} SRF_B[\lambda_i]}$$
 [1]

→ Fully random case, I assume $u(SRF_B) = 0$ and $Cov(Rrs[\lambda_i], Rrs[\lambda_i]) = 0 \forall i \neq j$:

$$u(Rrs[\lambda_B])^2 = \sum_{i=1}^N u(Rrs[\lambda_i])^2 \cdot \left(\frac{SRF_B[\lambda_i]}{\sum_{i=1}^N SRF_B[\lambda_i]}\right)^2 [2]$$

...Which is the sum in quadrature.

Then,

 \rightarrow Fully systematic case: assume maximum correlation between hyperspectral bands, still $u(SRF_B) = 0$

Then,

$$u(Rrs[\lambda_B])^2 = \sum_{i=1}^{N} u(Rrs[\lambda_i])^2 \cdot \left(\frac{SRF_B[\lambda_i]}{\sum_{i=1}^{N} SRF_B[\lambda_i]}\right)^2 + 2 \cdot \sum_{i < j} u(Rrs[\lambda_i]) \cdot u(Rrs[\lambda_i]) \cdot \left(\frac{SRF_B[\lambda_i]}{\sum_{i=1}^{N} SRF_B[\lambda_i]}\right) \cdot \left(\frac{SRF_B[\lambda_i]}{\sum_{i=1}^{N} SRF_B[\lambda_i]}\right) \cdot \left(\frac{SRF_B[\lambda_i]}{\sum_{i=1}^{N} SRF_B[\lambda_i]}\right) = \left(\sum_{i=1}^{N} u(Rrs[\lambda_i]) \cdot \frac{SRF_B[\lambda_i]}{\sum_{i=1}^{N} SRF_B[\lambda_i]}\right)^2 [4]$$
EUM/OPS-COPENTEM/15/813104, v2, 3 November 2021

 $Cov(Rrs[\lambda_i], Rrs[\lambda_i]) = u(Rrs[\lambda_i]) \cdot u(Rrs[\lambda_i]), \forall i, j [3]$

2. Some background: match-ups

2. Some background: match-ups: EUMETSAT extraction protocol

copernicus.eumetsat.int

EUMETSAT's Matchup Protocols: extraction of statistics at macropixel level

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

```
EUMETSAT Operations 13
```

2. Some background: match-ups: Bailey & Werdell protocol

copernicus.eumetsat.int

EUMETSAT's Matchup Protocols: extraction of statistics at macropixel level

2. Some background: match-ups: what protocol to use?

Current EUMETSATs matchup protocol

eesa

16

EUMETSATs Matchup Protocols: extraction of statistics at macropixel level

Current EUMETSATs matchup protocol: proposed changes (1)

copernicus.eumetsat.int

eesa

17

EUMETSATs Matchup Protocols: extraction of statistics at macropixel level

Current EUMETSATs matchup protocol: proposed changes (2)

copernicus.eumetsat.int

eesa

18

EUMETSATs Matchup Protocols: extraction of statistics at macropixel level

- In situ data used: AERONET-OC, Level 2.0
- Stations: Casablanca_Platform, Gloria, Helsinki_Lighthouse, LISCO, Section-7_Platform, USC_SEAPRISM, Galata_Platform, Gustav_Dalen_Tower, Lake_Erie, Palgrunden, Socheongcho, Venise
- A total of 2139 matchups

Comparing outlier detection, pixel by pixel

EUMETSAT Cesa 20

Comparing screened macropixels

Current protocol

Pixel X is considered outlier if:
$ value@X - mean < 1.5 \times \sigma$
Central value = median
i

copernicus.eumetsat.int

Band-by-band plots and statistics are often not sufficient...

S3A_OLCI_L2_IPF_OL_L2M.003_FR_EUMETSAT_standard_L2_3x3_MOBY S3A_OLCI_L2_IPF_OL_L2M.003_FR_EUMETSAT_standard_L2_3x3_MOBY S3A OLCI L2 IPF OL L2M.003 FR EUMETSAT standard L2 3x3 MOBY 0.004 ---- Satellite --- In Situ ---- diff: Satellite - In Situ N=132 N=132 N=132 0.0175 0.0175 Nbands=10 Nbands=10 Nbands=10 SAM=0.94 SAM=0.94 0.003 SAM=0.94 chi2=0.972 chi2=0.972 chi2=0.972 0.0150 0.0150 0.002 **Spectral statistics** 0.0125 0.0125 0.001 value for the whole set ريا 2.0100 آلاً. [] 0.0100 Rrs [sr-1] 0.000 រុ ស 0.0075 دی ۵.0075 -0.0010.0050 0.0050 -0.0020.0025 0.0025 -0.003 0.0000 0.0000 -0.004600 100 550 100 550 650 450 500 550 600 650 600 650 100 500 100 500 150 00 150 Wavelength [nm] Wavelength [nm] Wavelength [nm] statistics band-by-band, plotted spectrally S3A OLCI L2 IPF OL L2M.003 FR EUMETSAT standard L2 3x3 MOBY S3A OLCI L2 IPF OL L2M.003 FR EUMETSAT standard L2 3x3 MOBY S3A OLCI L2 IPF OL L2M.003 FR EUMETSAT standard L2 3x3 MOBY 400.0 MdD MdPD 412.5 N=132 442.5 0.0175 Nbands=10 — MdAD MdAPD 0.00100 490.0 SAM=0.94 510.0 chi2=0.972 560.0 ns [unitless] 80 0.0150 620.0 0.00075 665.0 Ц 673.75 S 681.25 [1-10 [-15] 0.0125 0.00050 entual Deviation 05 ຼາຍ ທີ່ ທີ່ ທີ່ ă 0.00025 Satellite 0.0075 0.00000 0.0050 Per Rrs: 0.0025 -0.00025 ŝ ž 0.0000 -0.000500.0000 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0025 150 500 550 600 650 100 400 450 500 550 600 100 650 100 Wavelength [nm] In situ Rrs [sr-1] Wavelength [nm]

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

copernicus.eumetsat.int

2. Some background: match-ups

Band-by-band plots and statistics are often not sufficient...

Check recommended statistics and definitions at: **Spectral statistics EUMETSAT's Matchup Protocols** 1value for the whole set **EUMETSAT** endations for Sentinel-3 OLCI Ocean Colour produce statistics band-by-band, plotted spectrally lidations in comparison with in situ measurements -Matchup Protocols This Document is Public ThoMaS: user can define it's own extraction statistics method window size time tolerance Doc.No. EUM/SEN3/DOC/19/1092968 295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 relevant statistics Issue ν7 Date 17 May 2021 WBS/DBS CEUMETSAT The copyright of this document is the property of EUMETSA

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

copernicus.eumetsat.int

copernicus.eumetsat.int

Mean Difference \rightarrow

$$\frac{1}{n}\sum_{i=1}^{n} \{Rrs(\lambda)_{OLCI,i} - Rrs(\lambda)_{in\,situ,i}\}$$

Mean Percent Difference \rightarrow

Mean Absolute Difference \rightarrow

Mean Absolute Percent Difference \rightarrow

$$\frac{1}{n}\sum_{i=1}^{n}\left\{\frac{Rrs(\lambda)_{OLCI,i}-Rrs(\lambda)_{in\,situ,i}}{Rrs(\lambda)_{in\,situ,i}}\right\}$$

$$\frac{1}{n}\sum_{i=1}^{n}\{|Rrs(\lambda)_{OLCI,i} - Rrs(\lambda)_{in\,situ,i}|\}$$

$$\frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{|Rrs(\lambda)_{OLCI,i} - Rrs(\lambda)_{in \, situ,i}|}{Rrs(\lambda)_{in \, situ,i}} \right\}$$

Log-based Mean Absolute Difference $\rightarrow LogMAD_{\lambda} = 10^{\sum_{i=1}^{N} |log_{10}(Rrs(\lambda)_{OLCI,i}) - log_{10}(Rrs(\lambda)_{in situ,i})|}$

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

Following recommendation by Seegers et al. 2018

copernicus.eumetsat.int

Median Difference
$$\rightarrow$$

$$\operatorname{median}_{1 \le i \le N} \{ Rrs(\lambda)_{OLCI,i} - Rrs(\lambda)_{in \, situ,i} \}$$

Median Percent Difference \rightarrow

Median Absolute Difference \rightarrow

$$\operatorname{median}_{1 \le i \le N} \left\{ \frac{Rrs(\lambda)_{OLCI,i} - Rrs(\lambda)_{in \, situ,i}}{Rrs(\lambda)_{in \, situ,i}} \right\}$$

$$\operatorname{median}_{1 \le i \le N} \{ | Rrs(\lambda)_{OLCI,i} - Rrs(\lambda)_{in \, situ,i} | \}$$

Median Absolute Percent Difference \rightarrow

$$\operatorname{median}_{1 \le i \le N} \left\{ \left| \frac{Rrs(\lambda)_{OLCI,i} - Rrs(\lambda)_{in \ situ,i}}{Rrs(\lambda)_{in \ situ,i}} \right| \right\}$$

2. Some background: match-ups, performance metrics used

copernicus.eumetsat.int

Spectral Angle Mapper \rightarrow

$$SAM = \frac{1}{N} \sum_{i=1}^{N} \left(acos\left(\frac{\langle Rrs_{in\,situ,i}, Rrs_{OLCI,i} \rangle}{\|Rrs_{in\,situ,i}\| \|Rrs_{OLCI,i}\|} \right) \right)$$

Chi-squared \rightarrow

$$\chi^{2} = \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{\lambda} \frac{\left(Y(\lambda)_{in \ situ,i} - Y(\lambda)_{OLCI,i} \right)^{2}}{Y(\lambda)_{in \ situ,i}} \right)$$
$$Y(\lambda)_{i} = \frac{Rrs(\lambda)_{i}}{Rrs(560)_{i}}$$

+ linear regression of two types...

2. Some background: match-ups, performance metrics used

copernicus.eumetsat.int

There is no one better than the other. Having both to compare can give a first assessment of the effect of the outliers in your matchup performanaces

1000 random re-samplings of the type $N(x,u_x)$

copernicus.eumetsat.int

copernicus.eumetsat.int

2. Some background: Metrologically-Compatible Fraction

copernicus.eumetsat.int

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

EUMETSAT Operaicus 35

2. Some background: Metrologically-Compatible Fraction

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

2. A discussion slide on radar plots summarising all the statistics

copernicus.eumetsat.int

ThoMaS workflow is divided into **5** main steps:

The steps can be executed **sequentially** or **independently** in case the needed outputs of the previous steps are available.

1. Step **insitu**

- 1. Ingest insitu data from SeaBASS input file
- 2. Apply several transformations to make insitu comparable to satellite data (e.g. spectral matching with satellite, BRDF correction)
- 3. Store them into standard IDB (In situ Data Base) netCDF4 file.
- \rightarrow This step can optionally include the acquisition of **ancillary information** from **ECMWF** at the lat-lon-times of your insitu measurements.
- 2. Step SatData: Download and list the satellite products (L1B and/or L2) matching spatially-temporally your insitu data.
 - \rightarrow Download for products available in EUMETSAT Data Store and NASA's OBPG.
- 3. Step **minifiles**: SatData are grouped/unnested into single netCDF4 file, sliced in horizontal dimensions, centred at the desired (in situ) location.

4. Step EDB.

- 1. Stack minifiles into single netCDF
- 2. Apply transformations to SatData to make them comparable to in situ (e.g. scale/unit conversion, BRDF correction)
- 3. Calculate extraction **statistics** over the extraction window following EUMETSAT's or any user-defined Matchup Protocol.
- 4. Store into standard EDB (Extraction Data Base) netCDF4 and CSV files.

5. Step MDB.

- 1. Combine insitu (IDB) and satellite (EDB) information indexed into insitu-satellite matchup pairs
- 2. Optionally apply time interpolation
- 3. Calculate matchup statistics
- 4. Store into standard MDB (Matchup Data Base) netCDF4 and CSV files.

3. Usage. Step insitu: SeaBASS/OCDB file

copernicus.eumetsat.int

/begin header

/investigators=TestPI /affiliations=TestAffiliation /contact=TestContact@TestInstitutution.org /received=20190101 /processed=20190101 /experiment=TestExperiment /cruise=TestCruise /station=NA /data file name=TestOCDBsubmission.txt /documents=see comments /calibration files=see comments /data type=cast /data status=final /water depth=NA /BRDF correction=None /instrument model=RAMSES /instrument manufacturer=TriOS /calibration date=NA

! COMMENTS

! Citation: Cite your paper where your data are published

/missing=-9999.

/delimiter=comma

TestStation001,20210815,11:30:00,0,0.01,0,134.7,0.2444,0.1,0.1,0.001886946,0.002068008,0.002167035,0.002305759,0.002504616,0.002699149,0.002943716,0.003166,... TestStation002,20201014,11:55:00,-32.6232,32.0859,0.01,0,134.8,0.2388,0.1,0.1,0.002158972,0.002363762,0.00247761,0.00264967,0.002880799,0.003116844,0.0034196,... TestStation003,20201014,12:16:00,-32.0209,26.9584,0.01,0,134.7,0.2388,0.1,0.1,0.001918189,0.002097384,0.002191946,0.002353893,0.002567901,0.002792078,0.00307,... TestStation004,20210910,09:40:00,3,-3,0.01,0,134.9,0.2388,0.1,0.1,0.001271305,0.001359205,0.00139314,0.001432681,0.001487187,0.00153414,0.00160502,0.00165816,... TestStation005,20210910,09:54:00,-4,4,0.01,0,134.8,0.277,0.1,0.1,0.00123858,0.001313013,0.001336158,0.00136599,0.001412448,0.001450581,0.001508596,0.00155277,... TestStation006,20210910,10:07:00,5,-5,0.01,0,134.8,0.277,0.1,0.1,0.001126482,0.001192422,0.001237373,0.001276362,0.001307301,0.00135953,0.0013975,...

3. Usage. Step insitu: SeaBASS/OCDB file

/begin header

/investigators=TestPI /affiliations=TestAffiliation /contact=TestContact@TestInstitutution.org /received=20190101 /processed=20190101 /experiment=TestExperiment /cruise=TestCruise /station=NA /data file name=TestOCDBsubmission.txt /documents=see comments /calibration files=see comments /data type=cast /data status=final /water depth=NA /BRDF correction=None /instrument model=RAMSES /instrument manufacturer=TriOS /calibration date=NA

! COMMENTS

! Citation: Cite your paper where your data are published

/missing=-9999.

/delimiter=comma

TestStation001,20210815,11:30:00,0,0.01,0,134.7,0.2444,0.1,0.1,0.001886946,0.002068008,0.002167035,0.002305759,0.002504616,0.002699149,0.002943716,0.003166,... TestStation002,20201014,11:55:00,-32.6232,32.0859,0.01,0,134.8,0.2388,0.1,0.1,0.002158972,0.002363762,0.00247761,0.00264967,0.002880799,0.003116844,0.0034196,... TestStation003,20201014,12:16:00,-32.0209,26.9584,0.01,0,134.7,0.2388,0.1,0.1,0.001918189,0.002097384,0.002191946,0.002353893,0.002567901,0.002792078,0.00307,... TestStation004,20210910,09:40:00,3,-3,0.01,0,134.9,0.2388,0.1,0.1,0.001271305,0.001359205,0.00139314,0.001432681,0.001487187,0.00153414,0.00160502,0.00165816,... TestStation005,20210910,09:54:00,-4,4,0.01,0,134.8,0.277,0.1,0.1,0.00123858,0.001313013,0.001336158,0.00136599,0.001412448,0.001450581,0.001508596,0.00155277,... TestStation006,20210910,10:07:00,5,-5,0.01,0,134.8,0.277,0.1,0.1,0.001126482,0.001192422,0.001237373,0.001276362,0.001307301,0.00135953,0.0013975,...

Recommendation: use Excel to bring your data to this format... However...

		<u> </u>	AutoSave			→ →	20210)916_An		
3.	Usage	e. Ster	File He	ome Insert	Page	e Layout	Formu	las I	DB file	e – editing with Excel
			r <u>~</u> X	Calibri		v 11	_ Δ^ Δ~		-	
20210916 AnaDelgado sh - No	atenad			, Calibit		•			-	copernicus.eumetsat.i
Ella Edit Format View Help	icipud -		Paste -	BIU	↓ P	A 🗸	~ A ~	\equiv	Ξ	
hegin header			~ 🛇				_		-	20210916 AnaDeghoMaS, deals with these
/investigators=Ana Lau			Clipboard	5	Fou	nt	G	-		File Edit Format Men
affiliations=Institut	Text Import Wizard - Step	1 of 3	Cilpboard		FUI	IIL	1.	2		/hegin header
contact=aldelgado@iad	lext import wizard - Step	1015	0.1	~		£	/handan han			/investigators=Ana Laura Delgado
experiment=Monte Herm	The Text Wizard has determine	d that your data is Fixed Wi	AI		×	Jx /	begin_ne	ader		/affiliations=Instituto Argentino de Oceanografia
cruise=Pescadores	If this is correct, choose Next o	r choose the data type that			F	F	в і н	1 1		/contact=aldelgado@iado-conicet.gob.ar
documents=lom.2012.10		T I I I I C	1 /begin_heade	r D	-					/experiment=Monte Hermoso,,,,,
calibration_files=NA	Original data type	lext Import Wizard - Ste	2 <i>l</i> investigators	=Ana Laura Delgado						/cruise=Pescadores,,,,,
data_type= bottle	Choose the file type that bes	This screen lets you set the o	3 /affiliations=lr	nstituto_Argentino_de Igado@iado.comicot.c	e_Oceano;	grafia				/documents=lom.2012.10.1011,,,,,
data_status=final	Delimited - Char	Delimiters	5 lexperiment=	Monte Hermoso	300.al					/calibration_files=NA,,,,,
water_depth= 0 V	Fixed width - Field	Tab	6 /cruise=Pesc	adores						/data_type= bottle,,,,,
wavelength_option=NA		Semicolon	7 /documents=l	om. 2012. 10. 1011						/data_status=final,,,,,
instrument_model=NA	Start import at row: 1		9 /data_tupe=.b	ies=NA ottle						/water_depth= 0,,,,,
instrument_manufacturs	Start import at Town		°10 /data_status=	final						/wavelength_option=NA,,,,,
calibration_date=NA			11 /water_depth=	: 0						/instrument_model=NA,,,,,
cloud_percent=NA nt	My data has headers	Other:	12 /wavelength_	option=NA						/instrument_manufacturer=NA,,,,,
seccni_deptn=NA			14 finstrument_n	noder=NA nanufacturer=NA						/calibration_date=NA,,,,,
wave_neight=NA			15 /calibration_d	ate=NA						/cloud_percent=NA,,,,,
wind_speed=NA iu	Preview of file C:\Users\Gos		16 /cloud_percer	nt=NA						/seccni_deptn=NA,,,,,,
COMMENTS	1/begin_header	Data preview	17 /secchi_depth	INA						/wave_neight=NA,,,,,
For this cruise Tot ^{SI}	2/investigators=And] -	19 /wind speed=	NA						/ wind_speed=way, , , , ,
Water samples were f ^u	4/contact=aldelgado		.20 !							COMMENTS
The optimal filtered	5/experiment=Monte_	/investigators=Ana	21 COMMENT	S				-1 1-1	CDB > 20210916 Ana	De! For this cruise. Total Suspended Matter was sourced from surface water :
The Whatman GF/F fil ^{ic}	7/documents=lom.201	/affiliations=Inst /contact=aldelgado	22 Porthis Too 23 Water samp	a Suspended Matter les were filtered imm	was sourc ediatelu af	ter the extract	ion following l	the protoc		
pre-weighed and rins	<	/experiment=Monte_	24 ! The op ran	ging from 0.51 to 21.			ion nonening.			! The optimal filtered volume was determined according to the obtained tu
The filters were onc		/documents=lom.201	25 ! The Whatm	an GFIF filters used w	vere pre-c	ombusted at 5	500 ŰC for 4 h	nours		The Whatman GF/F filters used were pre-combusted at 500 °C for 4 hour
		<	26 pre-wei and	dried at 65 A°C until	a constan	t weight was o the filtrations	bserved.			! pre-weighed and rinsed with at least 250 ml milli-Q water to eliminate
			28 !	ere once more weign			occarred.			The filters were once more weighed before the filtrations occurred.,,,,
missing=-999.			29 !							
delimiter=comma		dd a Placa	.30 /missing=-99	Э.					e current file type.	
fields=time,lat,lon,st	ation,spm,date		31 rdelimiter=cor 32 /fields=tillat	nma Ion station	som	date				/missing=-999.,,,,,
units=hh:mm:ss,degrees	,degrees,none,mg/L,	,yyyymmdd	33 Junits=hl degi	rees degrees none	mg/L	yyyymmdd				/delimiter=comma,,,,,
end_header			34 lend_header							/fields=time,lat,lon,station,spm,date
4:30:00,-38./90,-62.28	0,1,156,201/0901		35 14:30:00 -3	8.79 -62.28	1 156 2 22	5 2E+U/				/units=nn:mm:ss,degrees,degrees,none,mg/L,yyyymmdd
			37 12:55:00 -38	799 -62.264	2 32 3 49	2 2E+07 3 2E+07				/ena_neader,,,,,
			38 14:30:00 -38	775 -62.331	4 47	7 2E+07				14.30.00,-38.79,-02.28,1,150,20170901
			39 14:15:00 -38	742 -62.331	5 75	5 2E+07				
			40 15:32:00 -38	.751 -62.383	6 42 7 29	2 2E+07 3 2E+07				
			42 16:00:00 -38	888 -62.19	, 20 8 36	5 2E+07		_		
			43 17:00:00 -3	8.89 -62.191	9 34	4 2E+07				
			44 18:00:00 -38	882 -62.201 1	0 3	1 2E+07				
			46 13:00:00 -38	.004 -62.216 8.79 -62.28 1	n 37 2 84 1	2E+07				
			47 13:30:00 -3	8.79 -62.28 1	3 51.5	5 2E+07				
			48 14:00:00 -3	8.79 -62.28 1	4 58.4	4 2E+07				
EUM/OPS-COPER/TE	M/15/813104 v2	3 November 20	49 15:00:00 -3	8.79 -62.28 1 8.79 -62.29 1	5 135.4 6 412.3	1 2E+07				
	, 10, 010104, 12,		-30 10.00:00 -3	0.7J °02.20 I 0.70 °0.20 1	0 412.3 7	0 20+07				

3. Usage. Step SatData

EUMETSAT Data Store

EUMETSAT DAT	A SERVICES		
Product N	<u>Navigator</u> / Searc	ch results	
OLCI	×	We've found 36 results	
PLATFORM	~		OLC/ Level 1B Reduced Resolution in NRT - Sentinel-3 LEO View · Download · Order · Subscribe Image: Content of the sentime of the senthe senting sentime of the sentime of the sentime of the sentime
Sentinel-3 (36)	~		OLCI (Ocean and Land Colour Instrument) Reduced resolution: 1200m at nadir. All Sentinel-3 NRT products are available at pick-up point in less than 3h. Level 1 products are calibrated Top Of Atmosphere radiance values at OLC21 spectral bands. Radiances are
Dptical (36)		and the second second	computed from the instrument digital
SENSOR	\sim		
 OLCI (36) SLSTR (4) 			OLC/Level 1B RGB - Sentinel-3B
PROCESSING LEVEL Level 1 Data (7) Level 2 Data (12)	~		This product is an RGB (Red, Green, Blue) composite based upon data from S3B single swath <i>OLDL1</i> NRT products Top-Of-Atmosphere (TOA) radiometric measurements, radiometrically corrected, calibrated and spectrally characterised. The product is composed from data from a combination of the following

eumdac

. . .

. . .

Your local system

	S3A_OL_2_WFR20190409T103146_20190409T1
	S3A_OL_2_WFR20190410T100835_20190410T1
	S3A_OL_2_WFR20190413T102802_20190413T1
	S3A_OL_2_WFR20190502T103533_20190502T1
	S3A_OL_2_WFR20190529T103533_20190529T1
	S3A_OL_2_WFR20190530T101222_20190530T1
	S3A_OL_2_WFR20190618T101650_20190618T1
	S3A_OL_2_WFR20190828T093836_20190828T0
	S3A_OL_2_WFR20190830T102413_20190830T1
	S3A_OL_2_WFR20190831T100103_20190831T1
	S3A_OL_2_WFR20190903T102030_20190903T1
	S3A_OL_2_WFR20190904T095719_20190904T1
	S3A_OL_2_WFR20190907T101646_20190907T1
	S3A_OL_2_WFR20190918T103145_20190918T1
	S3A_OL_2_WFR20190919T100834_20190919T1
Standard waet request	S3A_OL_2_WFR20190922T102801_20190922T1
As in got OC ny from U. Mai	S3A_OL_2_WFR20190923T100450_20190923T1
As in getuc.py from 0. Mai	S3A_OL_2_WFR20190924T093839_20190924T0
	S3A_OL_2_WFR20190926T102417_20190926T1
	S3A_OL_2_WFR20190927T100106_20190927T1
	S3A_OL_2_WFR20191004T101649_20191004T1
, , , , , , , , , , , , , , , , , , ,	S3A_OL_2_WFR20191005T095338_20191005T0
	S3A_OL_2_WFR20191008T101604_20191008T1
	S3A_OL_2_WFR20191012T101220_20191012T1
	S3A_OL_2_WFR20191015T103147_20191015T1
	S3A_OL_2_WFR20191016T100836_20191016T1
	S3A_OL_2_WFR20191017T094225_20191017T0
7	S3A_OL_2_WFR20191019T102802_20191019T1
	S3A_OL_2_WFR20191027T102033_20191027T1
	S3A_OL_2_WFR20191112T100834_20191112T1

+ SatData Lists matching in situ

NASA's OBPG L2 standard products

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

copernicus.eumetsat.int

S3A_OL_2_WFR	_20190409T103146_20190409T1
S3A_OL_2_WFR	_20190410T100835_20190410T1
S3A_OL_2_WFR	_20190413T102802_20190413T1
S3A_OL_2_WFR	20190502T103533_20190502T1
S3A_OL_2_WFR	_20190529T103533_20190529T1
S3A_OL_2_WFR	_20190530T101222_20190530T1
S3A_OL_2_WFR	_20190618T101650_20190618T1
S3A_OL_2_WFR	_20190828T093836_20190828T0
S3A_OL_2_WFR	_20190830T102413_20190830T1
S3A_OL_2_WFR	_20190831T100103_20190831T1
S3A_OL_2_WFR	_20190903T102030_20190903T1
S3A_OL_2_WFR	_20190904T095719_20190904T1
S3A_OL_2_WFR	_20190907T101646_20190907T1
S3A_OL_2_WFR	_20190918T103145_20190918T1
S3A_OL_2_WFR	_20190919T100834_20190919T1
S3A_OL_2_WFR	_20190922T102801_20190922T1
S3A_OL_2_WFR	_20190923T100450_20190923T1
S3A_OL_2_WFR	_20190924T093839_20190924T0
S3A_OL_2_WFR	_20190926T102417_20190926T1
S3A_OL_2_WFR	_20190927T100106_20190927T1
S3A_OL_2_WFR	_20191004T101649_20191004T1
S3A_OL_2_WFR	_20191005T095338_20191005T0
S3A_OL_2_WFR	_20191008T101604_20191008T1
S3A_OL_2_WFR	_20191012T101220_20191012T1
S3A_OL_2_WFR	_20191015T103147_20191015T1
S3A_OL_2_WFR	_20191016T100836_20191016T1
S3A_OL_2_WFR	20191017T094225_20191017T0
S3A_OL_2_WFR	20191019T102802_20191019T1
S3A_OL_2_WFR	_20191027T102033_20191027T1
S3A_OL_2_WFR	_20191112T100834_20191112T1

ThoMaS uses the minimisation of the orthodromic distance approach to find the centroid of the window Satellite products are not altered at all at this step, with the exception of some OLCI geometries...

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

EUMETSAT Operations 45

3. Usage. Option download_extract_delete

copernicus.eumetsat.int

S3A_OL_2_WFR____20190409T103146_20190409T1...

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

3. Usage. Step EDB. Custom quality flags

- [pixel-by-pixel-screening] A threshold on NDVI:
 - (Rrs{865.0}-Rrs{620.0})/(Rrs{865.0}+Rrs{620.0})<0 ---> Pixels with negative NDVI will be screened.
- [macropixel-screening] A threshold on the median of CV[Rrs(412nm-555nm);AOT(865nm)], as in Bailey and Werdell 2006:
 - median[Rrs:cv{412...555};aot:cv{865}]>15 ---> Macropixels whose median coefficient of variation of Rrs in the range 412 nm to 555 nm and coefficient of variation of AOT at 865 nm combined (after pixel-by-pixel and outlier screening) falls above 15% will be screened.
 - Rrs{412} --> Specific band: 412 nm
 - Rrs{...} --> All bands
 - Rrs{412...555} --> All bands whose nominal wavelengths fall in the range 412 555 nm
 - Rrs{...555} --> All bands whose nominal wavelengths does not exceed 555 nm.
 - Rrs{412...} --> All bands whose nominal wavelengths does not go below 412 nm.

MDB file

1. Merging insitu and extractions according to matchup pairs

2. Statistical metrics calculated + scatter/spectral plots

Extraction data base (EDB) file

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

ThoMaS workflow is divided into **5** main steps:

The steps can be executed **sequentially** or **independently** in case the needed outputs of the previous steps are available.

1. Step **insitu**

- 1. Ingest insitu data from SeaBASS input file
- 2. Apply several transformations to make insitu comparable to satellite data (e.g. spectral matching with satellite, BRDF correction)
- 3. Store them into standard IDB (In situ Data Base) netCDF4 file.
- \rightarrow This step can optionally include the acquisition of **ancillary information** from **ECMWF** at the lat-lon-times of your insitu measurements.
- 2. Step SatData: Download and list the satellite products (L1B and/or L2) matching spatially-temporally your insitu data.
 - \rightarrow Download for products available in EUMETSAT Data Store and NASA's OBPG.
- 3. Step **minifiles**: SatData are grouped/unnested into single netCDF4 file, sliced in horizontal dimensions, centred at the desired (in situ) location.

4. Step EDB.

- 1. Stack minifiles into single netCDF
- 2. Apply transformations to SatData to make them comparable to in situ (e.g. scale/unit conversion, BRDF correction)
- 3. Calculate extraction **statistics** over the extraction window following EUMETSAT's or any user-defined Matchup Protocol.
- 4. Store into standard EDB (Extraction Data Base) netCDF4 and CSV files.

5. Step **MDB**.

- 1. Combine insitu (IDB) and satellite (EDB) information indexed into insitu-satellite matchup pairs
- 2. Optionally apply time interpolation
- 3. Calculate matchup statistics
- 4. Store into standard MDB (Matchup Data Base) netCDF4 and CSV files.

- IDB (In situ Data Base): a netCDF file containing all the information related to the inputted insitu data. + (if requested) ancillary information from ECMWF reanalysis datasets at the insitu geographic location and time stamp.
- SatData: an image file/directory. In the case of standard L1/L2 OLCI products, it is composed of a directory containing several netCDF files, each containing one/several products + a manifest.xml file.
- **Minifile**: A single netCDF file containing all the relevant L1/L2 products from a single SatData, but only at the required location (and with a predefined window size).
- EDB (Extraction Data Base): All the statistical information (pixel-by-pixel flagging, outlier removal, central and dispersion values before/after outlier/mask removal, etc., details of the extraction protocol) is stored for all the extractions in one single netCDF file per extraction set.
- MDB (Match-up Data Base): All the information from IDB and EDB combined and re-indexed according to matchup pairs + matchup statistics.

Find examples of all these files (except SatData) in the examples/example_files directory.

4. Pre-requisites

- 1. Apart from that background knowledge...
- 2. Conda: Install the latest Anaconda Python distribution.
- 3. EUMETSAT Data Store:
 - Create EO Portal user and get API consumer key and secret.
 - Save EO Portal API credentials under
 ~/.eumdac_credentials.json
- 4. NASA OBPG:
 - Create Earthaccess user and get user and password.
 - Save user and password under ~/.obpg_credentials.json
- 5. ECMWF: Register to ADS/CDS and get url and key.
- ECMWF: store ADS/CDS url/keys under ~/.ecmwf_api_config.txt

Dependencies

item	version	licence	package info
BeautifulSoup	4.6.0	MIT	https://anaconda.org/conda-forge/beautifulsoup4
cdsapi	0.1.6	Apache-2.0	https://anaconda.org/conda-forge/cdsapi
ephem	4.1.3	MIT	https://pypi.org/project/ephem/
eumdac	2.0.1	MIT	https://anaconda.org/eumetsat/eumdac
matplotlib	3.5.2	PSF-based	https://anaconda.org/conda-forge/matplotlib
netcdf4	1.5.8	MIT	https://anaconda.org/conda-forge/netcdf4
numpy	1.23.0	BSD-3-Clause	https://anaconda.org/conda-forge/numpy
pandas	1.4.3	BSD-3-Clause	https://anaconda.org/conda-forge/pandas
python	3.9	PSF	https://docs.python.org/3/license.html
scipy	1.8.1	BSD-3-Clause	https://anaconda.org/conda-forge/scipy
xarray	2022.3.0	Apache-2.0	https://anaconda.org/conda-forge/xarray
jupyter	1.0.0	Unspecified	https://anaconda.org/anaconda/jupyter

Conda will take care of this...

copernicus.eumetsat.int

• Git way:

cd ~ mkdir ThoMaS cd ThoMaS git clone --depth 1 https://gitlab.eumetsat.int/eumetlab/oceans/ocean-science-studies/ThoMaS .

• Direct download:

https://gitlab.eumetsat.int/eumetlab/oceans/ocean-science-studies/ThoMaS

Recent updates were done on the code

git fetch git pull Once conda and ThoMaS are installed, create the thomas env:

cd ~ cd ThoMaS conda env create –f environment.yml conda activate thomas

libmamba is the best choice for those of you who are stuck in the "Solving environment step"

Example 1: Indian Ocean

1. You want to download Sen-3A data overpassing the point location **(26 S, 100 E)** in the Indian Ocean, west of Australia, where I deployed an in situ instrument measuring continuously during the first 10 days of June 2022.

2. You want data from S3A, and L2 of the recent collection OL_L2M.003

3. Only full resolution (FR).

4. You just want to obtain the S3 files (SatData), minifiles and extractions, <u>I have my own</u> scripts to compute the statistics of the comparison with insitu.

5. In particular, you want to test EUMETSAT's standard protocol for window size: 3x3.

6. You want everything related to the run to be stored at /path/to/Indian_Ocean

Since <u>insitu not provided</u>, define **latLonTimeRanges.csv** and store it under ~/Indian_Ocean

StationID	Lat	Lon	time_start	time_stop
Indian_Ocean	-26	100	2022-06-01T00:00:00	2022-06-10T00:00:00

Example 1: Indian Ocean

1. You want to download Sen-3A data overpassing the point location **(26 S, 100 E)** in the Indian Ocean, west of Australia, where I deployed an in situ instrument measuring continuously during the first 10 days of June 2022.

2. You want data from S3A, and L2 of the recent collection OL_L2M.003

3. Only full resolution (FR).

4. You just want to obtain the S3 files (SatData), minifiles and extractions, <u>I have my own</u> scripts to compute the statistics of the comparison with insitu.

5. In particular, you want to test EUMETSAT's standard protocol for window size: 3x3.

6. You want everything related to the run to be stored at /path/to/Indian_Ocean

Your configuration file must look like:

[global]

path_output: /path/to/Indian_Ocean SetID: Indian_Ocean

[workflow] workflow: SatData, minifiles, EDB

[satellite] satellite_path-to-SatData: /path/to/Indian_Ocean/SatData satellite_source: EUMETSATdataStore satellite_collections: OL_L2M.003 satellite_platforms: S3A satellite_resolutions: FR

[minifiles] minifiles_winSize: 3

[EDB] EDB_protocols_L2: EUMETSAT_standard_L2 EDB_winSizes: 3

Since <u>insitu not provided</u>, define **latLonTimeRanges.csv** and store it under ~/Indian_Ocean

StationID	Lat	Lon	time_start	time_stop
Indian_Ocean	-26	100	2022-06-01T00:00:00	2022-06-10T00:00:00

Example 6: MOBY

1. You have a prepared a set of hyperspectral Rrs insitu measurements from MOBY in SeaBASS format not corrected for BRDF effects.

2.You wish to get matchups between this MOBY subset and
•S3A/OLCI standard FR L2,
•From the current collection OL__L2M.003
•using the standard extraction protocol from EUMETSAT,
•an extraction window of 5x5,
•an insitu-satellite time difference threshold of 1 hour (3600 seconds).

3. You are not interested in getting ancillary data from ECMWF for to the insitu data.

4. You want to apply the Morel et al. 2002 BRDF correction to both satellite and insitu.

5. You may have several insitu measurements corresponding to one single SatData within the time window that you selected, but you wish to keep only the closest in time with the satellite overpass.

6.You wish: SatData to be stored at /path/to/MOBY/SatData

7.all the other outputs (IDB, minifiles, EDB, MDB, etc.) to be stored at /path/to/MOBY

In this case, **latLonTimeRanges.csv** will be generated automatically by ThoMaS (based on your inputted insitu lat-lon and timestamps + your inputted time tolerance in config_file.ini) and stored under path_output

Example 6: MOBY

1. You have a prepared a set of hyperspectral Rrs insitu measurements from MOBY in SeaBASS format not corrected for BRDF effects.

2.You wish to get matchups between this MOBY subset and
•S3A/OLCI standard FR L2,
•From the current collection OL_L2M.003
•using the standard extraction protocol from EUMETSAT,
•an extraction window of 5x5,
•an insitu-satellite time difference threshold of 1 hour (3600 seconds).

3. You are not interested in getting ancillary data from ECMWF for to the insitu data.

4. You want to apply the Morel et al. 2002 BRDF correction to both satellite and insitu.

5.You may have several insitu measurements corresponding to one single SatData within the time window that you selected, but you wish to keep only the closest in time with the satellite overpass.

6.You wish: SatData to be stored at /path/to/MOBY/SatData

7.all the other outputs (IDB, minifiles, EDB, MDB, etc.) to be stored at /path/to/MOBY

In this case, **latLonTimeRanges.csv** will be generated automatically by ThoMaS (based on your inputted insitu lat-lon and timestamps + your inputted time tolerance in config_file.ini) and stored under path_output

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

Your configuration file must look like:

[global]

path_output: /path/to/MOBY SetID: MOBY

[workflow] workflow: insitu, SatData, minifiles, EDB, MDB

[insitu] insitu_input: /path/to/MOBY/MOBY_OCDB.csv insitu_satelliteTimeToleranceSeconds: 3600 insitu_getAncillary: False insitu_BRDF: M02

[satellite]

satellite_path-to-SatData: /path/to/MOBY/SatData satellite_source: EUMETSATdataStore satellite_collections: OL__L2M.003 satellite_platforms: S3A satellite_resolutions: FR satellite_BRDF: M02

[minifiles] minifiles_winSize: 5

[EDB]

EDB_protocols_L2: EUMETSAT_standard_L2 EDB_winSizes: 5

[MDB]

MDB_time-interpolation: insitu2satellite_NN MDB_stats_plots: True MDB_stats_protocol: EUMETSAT_standard_L2 copernicus.eumetsat.int

8. Run the code

Example 8: Socheongcho

[Zibordi et al. 2002]

Ongjin Socheongcho Ocean Research Station

8. Run the code

Example 8: Socheongcho

1. You want to test the performance of OLCI at the AERONET-OC station Socheongcho, West of Korea (Yellow Sea) during March 2021.

2. You wish to get matchups between this Socheongcho subset and

•S3A/OLCI standard FR L2,

•From the current collection OL_L2M.003

•using the standard extraction protocol from EUMETSAT,

•an extraction window of 5x5,

•an insitu-satellite time difference threshold of 1 hour (3600 seconds).

3. You are not interested in getting ancillary data from ECMWF for to the insitu data.

4. You want to apply the Morel et al. 2002 BRDF correction to both satellite and insitu.

5.You may have several insitu measurements corresponding to one single SatData within the time window that you selected, but you wish to keep only the closest in time with the satellite overpass.

6.You wish: SatData to be stored at /path/to/Socheongcho/SatData

7.all the other outputs (IDB, minifiles, EDB, MDB, etc.) to be stored at /path/to/Socheongcho

In this case, **latLonTimeRanges.csv** will be generated automatically by ThoMaS (based on your inputted insitu lat-lon and timestamps + your inputted time tolerance in config_file.ini) and stored under path_output

EUM/OPS-COPER/TEM/15/813104, v2, 3 November 2021

[global]

path_output: /path/to/Socheongcho SetID: Socheongcho

[workflow] workflow: insitu, SatData, minifiles, EDB, MDB

[AERONETOC]

AERONETOC_pathRaw:/path/to/AERONET_OC_raw AERONETOC_dateStart: 2021-03-01T00:00:00 AERONETOC_dateEnd: 2021-04-01T00:00:00 AERONETOC_dataQuality: 2 AERONETOC_station: Socheongcho

[insitu]

insitu_input: /path/to/Socheongcho/Socheongcho_OCDB.csv insitu_satelliteTimeToleranceSeconds: 3600 insitu_getAncillary: False insitu_BRDF: M02

[satellite]

satellite_path-to-SatData: /path/to/Socheongcho/SatData satellite_source: EUMETSATdataStore satellite_collections: OL__L2M.003 satellite_platforms: S3A satellite_resolutions: FR satellite_BRDF: M02

[minifiles] minifiles_winSize: 5

[EDB]

EDB_protocols_L2: EUMETSAT_standard_L2 EDB_winSizes: 5

[MDB]

MDB_time-interpolation: insitu2satellite_NN MDB_stats_plots: True MDB_stats_protocol: EUMETSAT_standard_L2 int

- 1. EUMETSAT Data Store credentials obtained and stored?
- 2. (optional) ECMWFADS/CDS credentials obtained and stored?
- 3. ThoMaS code cloned?
- 4. thomas conda environment set up and activated?
- 5. Required inputs in place? (config_file.ini, insitu input file?, lat-lon-time ranges file?)

If **YES**.. run by executing this command: **python /path/to/ThoMaS/main.py –cf /path/to/config_file.ini**

Contemporary Today's tour with ThoMaS

copernicus.eumetsat.int

63

EUMETSAT

Hope you enjoyed it! Thank you! Questions are welcome.

Getting started...

- Installing Anaconda
 - If you don't have Python...
- Cloning repositories
- **OR** On windows: Open Anaconda, find and launch the powershell.exe application. This will open a command line window.
 - On Linux or OSx: Open a terminal window
 - Clone the learn-olci and ThoMaS repositories: (you may wish to change directory first)
 - Copy and past the following lines into your terminal and hit "enter"
 - **learn-olci**: *git clone --recurse-submodules --remote-submodules* https://gitlab.eumetsat.int/eumetlab/oceans/ocean-training/sensors/learn-olci.git
 - ThoMaS: git clone https://gitlab.eumetsat.int/eumetlab/oceans/ocean-science-studies/ThoMaS.git
- Setting up Python environments
 - To create the required Python environments, you should copy and past the following lines into your terminal and hit "enter"
 - learn-olci: conda env create -f learn-olci/environment.yml
 - ThoMaS: conda env create -f ThoMaS/environment.yml

- Practical session
- If you haven't yet clone and set up the git repositories for learnolci/ThoMaS as per the instructions in the README
 - Note the submoduling for learn-olci
 - Extensions are not needed
- Key elements of both include setting up the credentials for access (file with your consumer key and secret).
 - See 1_OLCI_introductory notebooks on data store access
 - Can also see API_authentication notebook for support
- Explore notebooks for data access depending on your experience level/needs
- Run examples 1, 6 and 8 from ThoMaS (either command line or jupyter notebook ThoMaS_overview.ipynb)

Thank you! Questions are welcome.

Contacts and further information

For information on our training programme training@eumetsat.int

For information/support on EUMETSAT services ops@eumetsat.int

For our training calendar https://trainingevents.eumetsat.int/trui/