

Training on In situ Ocean Colour Above-Water Radiometry towards Satellite Validation

Uncertainty recap

Agnieszka Bialek National Physical Laboratory agnieszka.bialek@npl.co.uk,

Basic uncertainty concepts

Error

IS NOT the same as

Uncertainty

https://sisu-vana.ut.ee/measurement/introduction-concept-measurement-uncertainty

ESTIMATION OF MEASUREMENT UNCERTAINTY IN CHEMICAL ANALYSIS

Search

2. THE ORIGIN OF MEASUREMENT UNCERTAINTY

Course introduction

1. The concept of measurement uncertainty (MU)

Q

2. The origin of measurement uncertainty

Self-test 2

3. The basic concepts and tools

4. The first uncertainty quantification

- 5. Principles of measurement uncertainty estimation
- 6. Random and systematic effects revisited
- 7. Precision, trueness, accuracy
- 8. Overview of measurement uncertainty estimation approaches
- 9. The ISO GUM Modeling approach
- 10. The single-lab validation approach
- 11. Comparison of the approaches
- 12. Comparing measurement

Brief summary: Explanation, on the example of pipetting, where measurement uncertainty comes from. The concept of **uncertainty sources** – effects that cause the deviation of the measured value from the true value – is introduced. The main uncertainty sources of pipetting are introduced and explained: repeatability, calibration, temperature effect. Explanation of random and systematic effects is given. The concept of **repeatability** is introduced.

The first video demonstrates how pipetting with a classical volumetric pipette is done and explains where the uncertainty of the pipetted volume comes from.

https://sisu-vana.ut.ee/measurement/origin-measurement-uncertainty

Uncertainty vs. error

Uncertainty:

• Describes the spread of a probability distribution i.e. standard deviation

Error:

- The result of measurement imperfections
- From random and systematic effects

Correction

- Where an error is known, it can be corrected by applying a correction
- There will always be an unknown residual error

Consistency in terminology is important!

Systematic and random effects:

EFFECT

- Calibration of reference
- Alignment
- Noise
- Lamp current setting
- Lamp current stability
- Temperature sensitivity

• SYSTEMATIC

- Yes
- If not realigned
- No
- Probably if constant
- Probably not
- Depends on how much temperature is changing

lamp measured 5 times

Effects are random or systematic depending on the measurement process itself

	Situation	Random effects	Systematic effects	Uncertainty
1.	• • • • • •	Strong	Strong	High
2. 👴	••••	Strong	Weak (or absent)	Medium
3.	• 🖧	Weak	Strong	Medium
4.	<mark>.</mark>	Weak	Weak (or absent)	Low

Scheme 2.1. The influence of random and systematic effects on measurement uncertainty.

https://sisu-vana.ut.ee/measurement/origin-measurement-uncertainty

Standard deviation

 $\pm \sum_{i=1}^{n} \sqrt{\frac{(x_{i}-\bar{x})^2}{n-1}}$

- Describes the spread of the sample values about the mean
- A measure of the precision of the sample values
- The standard deviation is formalised as: $\sigma =$

$$\pm \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2 + (x_4 - \bar{x})^2 \dots + (x_n - \bar{x})^2}{n - 1}} = \frac{1}{n - 1}$$

Sigma (lowercase) – used to denote the standard deviation

Standard uncertainty associated with the mean NPL

- Tells us about the uncertainty associated with an average
- Expressed as *u(y)*: uncertainty associated with variable 'y'
- Standard uncertainty is a margin whose size can be thought of as \pm one standard deviation or

Standard uncertainty associated with the mean

Standard deviation or spread of the results: Uncertainty associated with a single value

Number of samples

Standard uncertainty associated with the mean for small number of repeats

$$u_{\text{light,mean}}^2 = \frac{N-1}{N-3} \left(\frac{s_{\text{light}}}{\sqrt{N}}\right)^2.$$

N=5 , s*1.41 N=10, s*1.13 N=25, S*1,04

Uncertainty propagation in HyperCP

* The Seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7), March 1999.

UNCERTAINTY EVALUATION

- > GUM Law of propagation of uncertainty
- > GUM supplement 1 Monte Carlo Methods

GUM

MCM

GUM ASSUMPTIONS AND RESTRICTIONS

- > Output value has Normal distribution
- > First order approximation applies to linear models
- > Symmetric distribution of inputs

http://www.bipm.org/en/publications/guides/

Bureau International des Poids et Mesures

 the intergovernmental organization through which Member States act together on matters related to measurement science and measurement standards.

Uncertainty Results – PySAS sample data

Uncertainty Results – PySAS sample data

Congratulation!

I finished and you survived ;-)