



**Copernicus FRM4SOC-2025 Training In Above-Water Radiometry** 



Angela Pomaro

National Research Council of Italy, Institute of Marine Sciences (CNR-ISMAR) angela.pomaro@cnr.it

















7 July 2025 - Venice, Italy

## CNR-O(cean) Observing System

**Diversity and geographical** distribution of the National Research Council of Italy (CNR-ISMAR) ocean METEOMARE-TS PALOMA observing system: ABATE Fixed observatories S1-GB Spar-buoy CANYON-LEVANTE Buoy Mooring LIDAR Coastal stations CORSICA **J** PORTO-NA ◆ HF-Radar **BACOLI** ▲ Lidar AGO-PATRIA + Autonomous vehicles (Gliders, COROGLIO EuroARGO, OpenSWAP, SWAMP, Drifters, etc.) **SARDEGNA** \* Resarch vessels **■** IONIO SICILIA CO1 SICILIA CO2







LAMPEDUSA



Survey

## Coordination: Exploitation & Growth

**Infrastructure upgrade plan** as percentage of
EOV/EVC/EBV per site
(Rif. GOOS Strategy)

#### **Objectives:**

Fill the **crucial data** gaps, monitoring, **foster interdisciplinary research** (key enabler)



|                                                             | ААОТ | PALOM<br>A | MEDA<br>S1-GB | BOA<br>E1 | MEDA<br>ABATE | MEDA<br>LAMP. | MCOR<br>SICA | мс01 | MC02 | MSAR<br>DINIA | MIONI<br>O | RADA<br>R-HF | MARE<br>OTS | METEO<br>TS | LIDAR    | METEO<br>POS.  |     | METEO<br>BACOL |      | METE |
|-------------------------------------------------------------|------|------------|---------------|-----------|---------------|---------------|--------------|------|------|---------------|------------|--------------|-------------|-------------|----------|----------------|-----|----------------|------|------|
| ECV - Aerosols                                              | 1    | 0          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Carbon Dioxide, Methane & Other Greenhouse Gases      | 1    | 2          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ozone                                                 | 0    | 0          | 0             | 0         | 0             | 0             | )            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Precursors for Aerosols and Ozone                     | 1    | 0          | 0             | 0         | 0             | 701           | 0            | 5    |      | 0             | 6          | Ú            | 0           | U           |          |                | 0   | 0              | 0    | 0    |
| ECV - Atmosphere, Surface: Precipitation                    | 4    | 1          | 1             | 0         | D             | 0             | 0            | 0    |      | 0             | 0/         | 0            | 0           | 1           | -        | 2 /            | 2   | 2              | 2    | 0    |
| ECV - Atmosphere, Surface: Surface Sea Level Pressure       | 4    | 2          | 1             | 1         |               | 1             |              |      |      | 0             | 0          | 0            | 2           | V           | Col      | V <sub>1</sub> | 4   | 1              | 1    | 0    |
| ECV - Atmosphere, Surface: Surface Radiation Budget         | 2    | 3          | 0             | 0         | 0             | 3             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 1           | 0        | 0              | 0   | 0              | 2    | 0    |
| ECV - Atmosphere, Surface: Surface Air Temperature          | 4    | 3          | 1             | 1         | 1             | 1             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 3           | 1        | 1              | 1   | 1              | 1    | 2    |
| ECV - Atmosphere, Surface: Surface Water Vapour             | 4    | 2          | 1             | 1         | 0             | 1             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 1           | 1        | 1              | 1   | 1              | 1    | 0    |
| ECV - Atmosphere, Surface: Surface Wind Speed and Direction | 9    | 6          | 2             | 2         | 2             | 1             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 4           | 0        | 4              | 4   | 4              | 4    | 0    |
| ECV - Ocean, Physical: Ocean Surface Heat Flux              | 0    | 0          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Physical: Sea Level                            | 5    | 1          | 0             | 0         | 1             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 5           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Physical: Sea State                            | 14   | 4          | 0             | 2         | 1             | 1             | 0            | 0    | 0    | 0             | 0          | 1            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Physical: Sea Surface Currents                 | 1    | 0          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 1            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Physical: Sea Surface Salinity                 | 1    | 0          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Physical: Sea Surface Stress                   | 1    | 0          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Physical: Sea Surface Temperature              | 1    | 0          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Physical: Subsurface Currents                  | 1    | 1          | 0             | 0         | 0             | 0             | 5            | 6    | 7    | 2             | 3          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Physical: Subsurface Salinity                  | 3    | 0          | 3             | 2         | 1             | 1             | 15           | 12   | 7    | 4             | 5          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Physical: Subsurface Temperature               | 3    | 8          | 3             | 2         | 1             | 3             | 18           | 16   | 12   | 4             | 5          | 0            | 0           | 7           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Biogeochemical: Inorganic Carbon               | 1    | 9          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Biogeochemical: Nitrous Oxide                  | 0    | 0          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Biogeochemical: Nutrients                      | 2    | 5          | 1             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Biogeochemical: Ocean Colour                   | 4    | 0          | 2             | 2         | 0             | 5             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Biogeochemical: Oxygen                         | 2    | 4          | 1             | 1         | 0             | 1             | 1            | 2    | 0    | 0             | 4          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| ECV - Ocean, Biogeochemical: Transient Tracers              | 0    | 0          | 5             | 5         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| EOV - Biogeochemistry: Particulate Matter                   | 1    | 1          | 2             | 1         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| EOV - Biogeochemistry: Stable Carbon Isotopes               | 0    | 0          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| EOV - Biogeochemistry: Dissolved Organic Carbon             | 1    | 0          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| EOV - Biol. and Ecosys: Phytoplankton Biomass and Diversity | 6    | 3          | 4             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| EOV - Biol. and Ecosys: : Zooplankton Biomass and Diversity | 1    | 1          | 0             | 0         | 0             | 0             | 1            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| EOV – Biol. and Ecosys: Fish Abundance and Distribution     | 3    | 0          | 1             | 0         | 0             | 0             | 1            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| EOV – Biol. and Ecosys: Microbe Biomass and Diversity       | 0    | 0          | 0             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| EOV – Biol. and Ecosys: Invertebrate Abundance and Distrib. | 1    | 0          | 1             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| EOV - Cross-Disciplinary: Ocean Sound                       | 2    | 2          | 1             | 0         | 0             | 0             | 0            | 0    | 0    | 0             | 0          | 0            | 0           | 0           | 0        | 0              | 0   | 0              | 0    | 0    |
| 35                                                          | 29   | 18         | 16            | 11        | 7             | 10            | 6            | 4    | 3    | 3             | 4          | 2            | 2           | 7           | 3        | 5              | 5   | 5              | 6    | 1    |
| PERCENTUALE ECV/EOV                                         | 83%  | 51%        | 46%           | 31%       | 20%           | 29%           | 17%          | 11%  | 9%   | 9%            | 11%        | 6%           | 6%          | 20%         | 9%       | 14%            | 14% | 14%            | 17%  | 3%   |
| INCREMENTO ITINERIS                                         | 20%  | 0.70       | 9%            | 2000      | 00/           |               |              | ,    |      | T             | 1          |              |             |             | <u> </u> |                | 1   | 1              | 13,7 |      |



## Multi- & Trans-domain approach



**RV Gaia Blu** 

## Multi-platform approach



#### Network of marine labs

The CNR-ISMAR Sea Laboratories are 13 entities each operating in multiple locations of the Institute, aimed at the treatment, study and analysis of the environmental and biological matrices.





















**COLLECTION AND TREATMENT OF SAMPLES (SAMPLES)** 

**CORE REPOSITORY (ISMAR\_CoRe)** 

NON-DISTRUCTIVE CORE LOGGING AND ANLSYSIS (O-SED)

**SEDIMENTOLOGY AND GRAIN-SIZE (GRAIL)** 

OPTICAL MICROSCOPY AND DIGITALIZATION (MicrODig 2D/3D)

**CONTAMINANTS AND MICROPLASTICS (Cont-Plas)** 

MICROBIOLOGY, MOLECULAR BIOLOGY, ECOTOXICOLOGY (Bio-Ecotox)

**MARINE ECOLOGY (Eco-Mar)** 

**BIOGEOCHEMISTRY (BioGeoChem)** 

MICROCOSMS (μ-COSM)

OCEANOGRAPHIC SENSORS (Ocean-I)

MAGNETISM AND PALEOMAGNETISM (PMAG)

PHYSICS AND GEOCHEMISTRY OF SEDIMENTS AND ROCKS (GeoPhys)

#### Coordination: national and international

#### **Objective:**

Integration and harmonization of all research infrastructures also in the ESFRI context to guarantee access, services and long-term interdisciplinary research and data **interoperability**, for impactful contribution at EU and international level; avoid overlapping and ensure effective **HR and cost** management







### RV Gaia Blu











12 Oceanographic campaigns184 Days on board>40 Colleagues involved

New submission, very soon



## Acqua Alta Oceanographic Tower (AAOT)



#### → OBSERVATIONS (routine)

**SEA** (level, waves, temperature, salinity, currents, nutrients, oxigen, plankton, carbon, ocean color)

**ATMOSPHERE** (wind, pressure, precipitation, radiation budget, water vapour, carbon)



GPS Coordinates: 45° 18' 51" N, - 12° 30' 29" E

**Installation**: 1970, refit 2018



- Ocean Color Training (2024)
- Users meeting (2024)
- Bulletin of activities (yearly)
- Full Data sharing (soon)



## The global picture

















## Acqua Alta Oceanographic Tower (AAOT)



## Venice Acqua Alta oceanographic tower 10 km

## From local to global





- Worldwide **longest directional wave dataset** (since 1979) enabling detection and understanding of climate change trends
- Sea level integrated with the high-tide warning system of the municipality of Venice
- Full meteo-oceanographic and hydrological variables coverage





## 

TA DESCRIPTOR

#### **OPEN** An exceptionally high wave at the **CNR-ISMAR** oceanographic tower in the Northern Adriatic Sea

Luigi Cavaleri, Francesco Barbariol, Mauro Bastianini, Alvise Benetazzo, Luciana Bertotti & Angela Pomaro <sup>™</sup>

On December 15, 2009, a very high wave crest was recorded by a local camera at the CNR-ISMAR oceanographic tower, 15 km offshore Venice in the Northern Adriatic Sea (Italy). The height of the estimated crest elevation appears well beyond the value (1,25-H<sub>2</sub>) commonly used to identify a wave as freak. We document the wave event with a full description of the corresponding met-ocean conditions and related measurements, of which we provide a critical analysis.



## Experimental campaigns planning







Copernicus FICE 2025 Training Event

## ... and instrumental testing



## Patents development





## High-resolution instrumentation (e.g., Nortek signature ADCP)



## Long and short term variability studies

Measurement of hydrological parameters at different depths.

#### **Applications**:

- River plumes detection
- Dense water formation and related processes
- Long-term monitoring





#### Neoceratium furca Prorocentrum Rhizosolenia Prorocentrum ( styliformis Cryptophyceans Proboscia Guinardia annulata striata Cerataulina CHCHCHCHCHC Chaetoceros compressus Neoceratium 2000 trichoceros Pseusosolenia calcar-avis Syracosphaera 🌑 pulchra Caliptrosphaera 1000 elegans 500 August September October November December February Podon



## Biogeochemical observations



## Automated microscopy imaging system AI assisted



# Visual Census of the pelagic ichthyofauna using an underwater webcams



#### AI assisted underwater webcams



## Ecological monitoring studies

Pinna nobilis (Mollusca: Bivalvia) larvae monitoring

Wood samples durability tests







Copernicus FICE 2025 Training Event

## Time-series of bio-optical data for ocean colour applications













































