Copernicus FICE 2025

Training on In situ Ocean Colour Above-Water Radiometry towards Satellite Validation

Cicchetti y Tapas Team 📜 🧀

Ivan Farace – Jorge García Jiménez – Carolina Mander

6-20 July 2025 Venice, Italy

copernicus.eumetsat.int

1. Experience during San Servolo and AAOT measurements

Main challenges during the measurements in San Servolo

- Coordination between team members and synchronization of operations
- Logistical difficulties due to the limited space on the jetty and cable management
- Installing and stabilizing the radiometers was not easy

Unexpected issues and solutions

Interference from the jetty structure: we had to change the installation location of the setup

Individual roles during the measurements

- One person was responsible for triggering the casts and the sensors
- One person took care of the logbook and notes (e.g. time, weather, instrument ID)
- One person was dedicated to taking photos and videos
- Coordination was important to make the work easier and more efficient

Comparison between San Servolo and AAOT protocols

- San Servolo protocols were easier to follow, offered easy access to the water but the working space was limited and there was less equipment available
- AAOT protocols require more effort but there was more space to work and better technology and instruments were available

Differences when using TriOS compared to other instruments

- TriOS requires special attention for the setup and for maintaining the correct geometry between radiometers
- The setup needs to be manually moved to stay correctly located with the Sun
- The calibration and data management are more structured and reliable

1. Experience during San Servolo and AAOT measurements

- Main challenges during the measurements in San Servolo
 - Coordination between team members and synchronization of operations
 - Logistical difficulties due to the limited space on the jetty and cable management
 - Installing and stabilizing the radiometers was not easy

2. Workflow

Tara Database EUMETSAT (In situ Rrs, Chl; **Datastore OLCI Level-2 Rrs** SPM) **ThoMaS Matchup** (Time & Space Collocation) **OLCI Relfectance Spectral** convolution In situ → OLCI SRF Remote sensig reflectance **Metrics** (Bias, RMSE, R², MAPE, etc.)

2. Our Area of Interest

2. Our Area of Interest:

Figure 2: Ria Etel, Sentinel-3 OLCI, 25/09/2023

ThoMaS

Global workflow:

- SatData, minifiles and EDB

SatData: L2 images from S3A & S3B, FR.

Minifiles and EDB were in window size 5x5

[Lat, Lon] = 47.6209, -3.2354

Start Time: 2023-09-25T06:00:00 Stop Time: 2023-09-25T12:00:00

2. Our Results:

Figure 3: Matchup comparison through Spectra and Scatter plot, bias per band

2. Our Results:

Figure 4: Comparison of Chlorophyll-a

2. Our Results: copernicus.eumetsat.int

Figure 5: TSM_NN from S3

copernicus.eumetsat.int

3. Achieving FRM quality in our future measurements

Main current challenges at your sites

· Lack of certified or recently calibrated instruments.

copernicus.eumetsat.int

3. Achieving FRM quality in our future measurements

- How the community can support you
 - Provide open-source and updated tools for data processing (e.g. HyperCP, ThoMaS).
 - Establish forums or community hubs to share cases, tools, and updates.*
 - Continuous training programs and support for instrument calibration.
- Use of HyperCP / ThoMaS: experiences and suggested improvements
 - Initial learning curve is rather high for new users.
 - Greater documentation and step-by-step practical examples are needed.*
 - Some parameters are hard to adapt to local conditions (e.g. very turbid or deep waters).
 - A simplified interface or a web-based version for field use would be useful.

THANK YOU FOR YOUR ATTENTION! 🤓 🐥

