Copernicus FICE 2025

Training on

In situ Ocean Colour Above-Water Radiometry towards Satellite Validation

Reading the Water's colors

Deuk-Jae Hwang¹, Sergio Mauricio Molano Cardenas², and Mengjie Zhao³

¹Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology, ghkdemrwo@kiost.ac.kr

²Federal University of Rio Grande do Sul, sergio.molano@ufrgs.br

³Istituto di Scienze Marine, Consiglio Nazionalle delle Richerche, mengjie.zhao@uniroma1.it

Field measurements in San Servolo and AAOT

Boat passage

Our experience

copernicus.eumetsat.int

CE318-SONET SUN PHOTOMETER INTERNSHIP

measure aerosols, looking up at the sky from the land, and it does not involve reflections from the ocean.

In this internship, a CE318 solar photometer was used to manually observe solar radiation, obtain the changes in solar radiation during the period of 15:19:42-15:50:08, and calculate the aerosol optical depth based on the given temporal and spatial conditions and calibration coefficients.

copernicus.eumetsat.int

Lack IOCCG protocol application.

Adjacency and bottom effects.

Platform-induced perturbations.

Currents, wave-dominated, complex waters.

Own experience 1

- Ocean Research Station-Socheong-cho and Ieodo
 - √ Fixed platform
 - ✓ Location of instrument was fixed and cannot change the observation angle
 - ✓ It can make some errors due to a relative azimuth angle
- Research Vessle-Onnuri and Ieodo
 - ✓ Onnuri: 1422 ton, Ieodo: 357 ton
 - ✓ Can move heading of the vehicle
 - ✓ By the movement of ocean, such as wave, tidal current or swell, the observation was inhibited

Own experience 2 and Suggestions

copernicus.eumetsat.int

GEO-KOMPSAT-2B (GK-2B) is a geostationary satellite mounted with the Geostationary Ocean Color Imager II (GOCI-II) for marine and environmental observation which always monitors the Korean Peninsula at the altitude of 36,000 km above the equator.

- TriOS and ASD Fieldspec for hyperspectral (VIS, NIR)
- Fieldspec
 - ✓ Change viewing angle manually
 - ✓ Can use tripod for Es observation
 - Human error(main reason for error and uncertainty)

Suggestions

- ✓ The drawing for the TriOS mounting frame (like a 3D architecture)
- ✓ FRM protocols for geostationary will be needed
- ✓ Geostationary sensors have higher temporal re Local Area Coverage

HyperCP-First Wicket

- How do R_{rs} and E_s compare between the TriOS and the SeaBird instruments?
- What is missing from TriOS plots? Why?

HyperCP-San Servolo data processing

TriOS (manual)

HyperCP- L2_Uncertainty_Breakdown

TriOS (manual)

copernicus.eumetsat.int

Rrs Class Based Uncertainty Components at 440.36nm

Lw Class Based Uncertainty Components at 440.36nm

Class-Based branch Breakdown of Rrs Uncertainties

HyperCP San Servolo result

- 6.9% upwelling radiance removed during the L1BQC stage.
- NIR (Near-Infrared) correction failed.
- Optically complex Waters, Chl-dominant.

AeronetOC Socheongcho exercise

copernicus.eumetsat.int

3 Matchups between Sentinel-3 and AERONETOC insitu.

Lower in situ-satellite difference from 650 nm.

ThoMAS result for example 6

3. Downloaded satellite data list

4. List of match-

1. Configuration

2. Satellite data to download

ThoMAS result for example 6

- There were 2 case of comparison data, one for 3x3 filter and the other for 5x5 filter.
- 1. There was an inverse relationship between wavelength and the magnitude of the error.
- It looks like nearby Lāna'i island in Hawai.
- I never been before, but the Rrs spectra showed ocean near this area had very clear water (case 1 water)
- As you can see at the previous slide, match-up result showed a high similarity between satellite and in-situ data

North Korea

Incheon PART III South Korea

Chungnam

Achieving "FRM quality" over future measurement

- **1.FRM is aspirational** Most teams achieve Tier-2 (operational) vs. Tier-1 (reference) standards.
- 2.Tool flexibility is critical: Demand open-source, modular processing chains.
- **3.Advocate for regional calibration centers** Lobby ESA for "FRM4SOC-2 Regional Nodes".

Achieving "FRM quality" over future measurement

copernicus.eumetsat.int

Collaboration

Procedures.

Rigorous insitu measurements

Improve validation workflows.

Ready to implement

FRM QA/QC

framework.

NION Operaicu

Achieving "FRM quality" over future measurement

- More smaller vessles Jangmok-1,2(35 ton) and other commercial fishery boats
 - ✓ Easier to change heading of the boat
 - ✓ More movement by ocean and atmospheric condition reason for error
 - ✓ Usually swell, wave, and tidal current (or sometimes wind)
 - ✓ For this reason, restrict QA/QC should be needed
- To OC community
 - ✓ Announcement for every ocean color users about FRM standard ancillary information (like SeaBASS format)

- Expectation to use HyperCP and ThoMAS
 - ✓ HyperCP is more expected to use at my institute
 - ✓ TriOS is the main radiometer for our institute.
 - ✓ Good to quantify uncertainty of TriOS data
- Suggestion for using HyperCP
 - ✓ It would be highly beneficial to have the flexibility to change the bands when matching satellite data, especially when visualizing L2 (Level 2) plots as individual points.

We made it!

- It was a very good chance to learn a professional method for in-situ measurements.
- HyperCP and ThoMaS are very powerful tools to cooking data from above water radiometry instruments.
- But if anyone want to expert for it, they have to know about the instrument and field observation protocols also.
- Leveraging my experiences here, I'll strive to introduce FRM protocol, HyperCP, and ThoMaS to others, encouraging their use to collectively generate valuable field observation data. - from Jay
- The successful transfer of expertise in the FRM principles to our local institutions hinges on the practical transference of what was learned during FICE2025. - from Sergio

