Copernicus FICE 2025

Training on

In situ Ocean Colour Above-Water Radiometry towards Satellite Validation

Uncertainty analysis in HyperCP

Agnieszka Bialek National Physical Laboratory agnieszka.bialek@npl.co.uk

6-20 July 2025 Venice, Italy

UNCERTAINTY EVALUATION

- > GUM Law of propagation of uncertainty
- > GUM supplement 1 Monte Carlo Methods

GUM

GUM ASSUMPTIONS AND RESTRICTIONS

- > Output value has Normal distribution
- > First order approximation applies to linear models
- > Symmetric distribution of inputs

 the intergovernmental organization through which Member States act together on matters related to measurement science and measurement standards.

http://www.bipm.org/en/publications/guides/

GUM Methodology applied in CoMET tool

$$u_c^2(y) = \sum_{i=1}^N c_i^2 u^2(x_i) + 2 \sum_{i=1}^{N-1} \sum_{j=1+1}^N c_i c_j u(x_i) u(x_j) r(x_i, x_j),$$

L_t	c_{c2}	ρ	L_i	c_{c3}	E_s	c_{c8}
1	0	0	0	0	0	0
0	1	0	0	1	0	1
0	0	1	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	1	0	1
0	0	0	0	0	1	0
0	1	0	0	1	0	1

Input Data (L1AQC) Full Full FRM RadCal Yes No No Instrument Instrument branch Char. Char Yes **Instrument Characterization:** HyperOCR Class based TriOS Dark current noise • branch TriOS HyperOCR Linearity of response Calibration/stability Straylight response Instrument based Sirrex-7* RadCal HyperOCR correction TriOS Angularity of response uncertainties Thermal response Polarization response Instrument-specific Class-specific Class-specific uncertainties uncertainties uncertainties propagated propagated propagated FRM-compliant with FRM-compliant with Non-FRM-compliant No uncertainties small uncertainties bigger uncertainties with large uncertainties Non-FRM Class based Factory FRM Class based Full characterisation (TriOS only) (SeaBird only)

^{*} The Seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7), March 1999.

Irradiance

$$E_d(\lambda) = \overline{E_d(\lambda)} \cdot c_{cal}(\lambda) c_{stab}(\lambda) c_{lin}(\lambda) c_{stray}(\lambda) c_T(\lambda) f_{cos}$$

Radiance

$$L_t(\lambda) = \overline{L_t(\lambda)} \cdot c_{cal}(\lambda) c_{stab}(\lambda) c_{lin}(\lambda) c_{stray}(\lambda) c_T(\lambda) c_{pol}(\lambda)$$

Approach

Table 3. Summary information about each uncertainty component values for class-based approach (blue branch, Fig. 5)

Variable symbol	Variable name/description	Exemplary uncertainty magnitude for class-based characterisation		PDF shape	Correlation	Correlation between 'corr_between'
		TRIOS	HyperOCR			
$ \begin{array}{l} \left(DN_{\mathrm{light},L_X} - DN_{dark,L_X}\right) \\ \left(DN_{\mathrm{light},E_S} - DN_{dark,E_S}\right) \end{array} $	Mean value of DNs measured by a single instrument at a "station"	Standard deviation calculated per measurement from data statistics		Normal	Random	N/A
$c_{ m cal}$	Absolute radiometric calibration	Uncertainty values from calibration certificate divided by 2 to convert them back into standard uncertainty, k=1		Normal	Systematic	Between all three instruments
C _{stab}	Absolute calibration stability	1%		Rectangular	Systematic	N/A
$c_{ m lin}$	Detector non-linearity	2%		Normal	Systematic	Between all three instruments
C _{stray}	Spectral stray light	Vary spectrally and per instrument due to difference in spectral shape of the signal, should come from the class-based stray light file		Normal	Systematic	Between all three instruments
c_T	Temperature sensitivity	Vary spectrally come from the class-based temperature sensitivity file		Normal	Systematic	Between all three instruments
$c_{ m pol}$	Polarisation sensitivity (Radiance only)	Vary spectrally and per instrument to use published data from (Talone and Zibordi, 2016)	Vary spectrally and per instrument triple values for TRIOS, as shown in [AD-1]	Normal	Systematic	Between two radiance instruments
c_{cos}	Cosine response (Irradiance only)	Directional 3.5%	Directional 2%	Normal	Systematic	N/A

Approach

Table 3. Summary information about each uncertainty component for sea surface reflectance factor (ρ) estimation using Mobley method to estimate the sea-surface reflectance factor (ρ) .

	46.
la	La
17	4.1
	*

Variable symbol	Variable name/description	Exemplary uncertainty magnitude	PDF shape	Correlation 'corr_x'	Correlation between 'corr_between'
ρ	Sea surface reflectance	Calculated for each cast depends on all input components, especially wind speed	Normal	Random	N/A
W_{s}	Wind speed	2 ms ⁻¹	Normal	Random	N/A
$\Delta \phi$	Relative azimuth	3°	Normal	Random ¹	N/A
θ_s	Solar zenith angle	0.5°	Normal	Random	N/A
+0	Model error	Difference between Mobley and Zhang method	Rectangular	Systematic	N/A

Default Branch CP Implementation Example

Source of Uncertainty	Input Uncertainty
DN_{light}	Std (<i>k</i> =1)
DN_{dark}	Std (<i>k</i> =1)
c_{cal}	Tartu file
c_{stab}	1%
c_{lin}	2%
c_{stray}	FRM4SOC- 1
c_{temp}	Tartu file
c_{cos}	2%

- Occurs at L1B during dark correction, c_{cal} is taken from Tartu file.
- Time average $DN_{light} \& DN_{dark}$.
- Remaining coefficients are set to 1.
- Measurement function is defined in python.
- Punpy generates samples from inputs and uncertainties.
- Runs M=10000 Monte Carlo uncertainty propagation according to the GUM.
- Output is divided by signal to generate relative uncertainty.
- Saved in the uncertainty budget group.

Progress Meeting 6 21.09.2022

Using Monte Carlo

- First, we need to identify our measurement function, f
- We need our inputs to the measurement function with their associated uncertainties
- Then we build samples of M draws, based on known input correlation
- We run those samples through f
- $u_c(y)$ can be found from the statistics of the output

How FRM Uncertainties are Propagated

- We combine and process samples directly
- We calculate uncertainty (in theory) alongside the processor
- Correlations are engendered within the samples
- L2 uncertainties (R_{rs}, Lw, NLw), are calculated using distributions of Es, Li, Lt, & Rho which contain information of uncertainty and correlation

FRM Uncertainties – an example


```
sample_Lw = Propagate_L2_FRM.run_samples(Propagate.Lw_FRM, MC_x: [ltSample, rhoSample, liSample])

sample_Rrs = Propagate_L2_FRM.run_samples(Propagate.Rrs_FRM, MC_x: [ltSample, rhoSample, liSample, esSample])

susages = ARamsay1/

@staticmethod

def Lw_FRM(lt, rho, li):

""" Lw FRM branch measurment function """

return lt - (rho * li)

return (lt - (rho * li)) / es

348
```

HyperCP

Variable Symbol	Variable Name	Uncertainty Source	Class Based	FRM
			Correction Applied	
$ \begin{pmatrix} DN_{light,L_X} - DN_{dark,L_X} \\ DN_{light,E_S} - DN_{dark,E_S} \end{pmatrix} $	Mean value of DNs measured by a single instrument at a "station"	Standard deviation calculated from statistics of filtered measurements	NA	NA
^c cal	Absolute Radiometric Calibration	Instrument specific characterisation	NA	NA
^c stab	Absolute Calibration Stability	Instrument specific characterisation	NA	NA
^c lin	Detector Non-Linearity	Instrument specific characterisation	No	Yes
^C stray	Spectral Stray Light	Zong stray light correction method	No	Yes
c_T	Temperature Sensitivity	Instrument specific characterisation	No	Yes
^c pol	Polarisation Sensitivity (Radiance)	Class specific characterisation	No	No
ccos	Cosine Response (Irradiance)	Instrument specific characterisation	No	Yes

Uncertainty Results – PySAS sample data

Uncertainty Results – PySAS sample data

Rrs - Uncertainty_with_Zong_Correction - Full Correction Seabird HyperOCR

FICE2025

/wind_speed=4.29 SZA =59.5

ES Class Based Uncertainty Components at 441.86nm

ES Class Based Uncertainty Components at 675.46nm

Cumulative Uncertainty breakdown

FICE2025

20250710T154122Z 0507S L2.hdf 6 LI [uW/cm^2/nm/sr] 1 -700 400 600 800 300 900 1000 wavelength (nm) Interval: 300 s

LI Class Based Uncertainty Components at 441.86nm

LI Class Based Uncertainty Components at 675.46nm

Cumulative Uncertainty breakdown

FICE2025

LT Class Based Uncertainty Components at 441.86nm

Lw Class Based Uncertainty Components at 441.86nm

LT Class Based Uncertainty Components at 560.32nm

Lw Class Based Uncertainty Components at 560.32nm

LT Class Based Uncertainty Components at 675.46nm

Lw Class Based Uncertainty Components at 675.46nm

Cumulative Uncertainty breakdown

FICE2025

Rrs Class Based Uncertainty Components at 441.86nm

Rrs Class Based Uncertainty Components at 675.46nm

Congratulation!

I finished and you survived ;-)