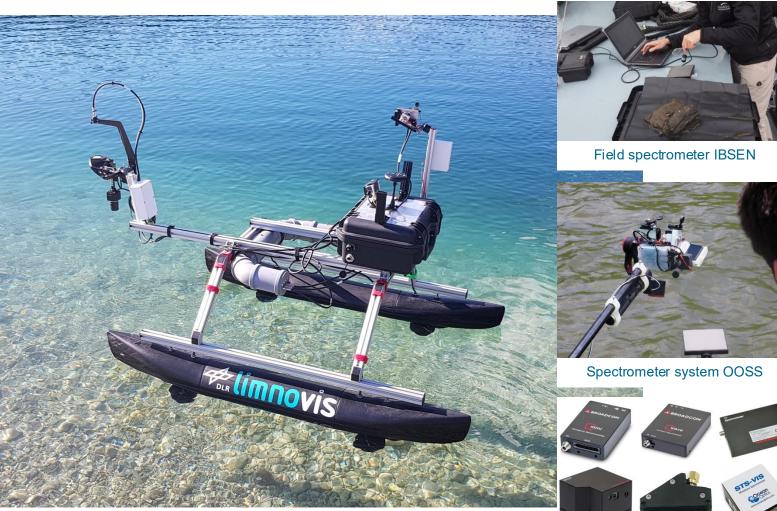
DLR'S CURRENT AND PLANNED OCR CAL/CHAR ACTIVITIES

Second FRM4SOC-2 Workshop on Cal/Char, Tartu Observatory, Estonia, 20-22 May 2025

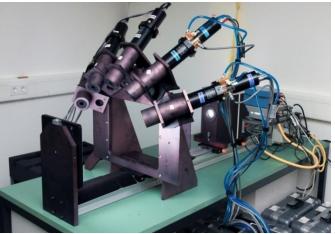
Peter Gege, Stefan Plattner, Ian Somlai


DLR, Remote Sensing Technology Institute, Germany

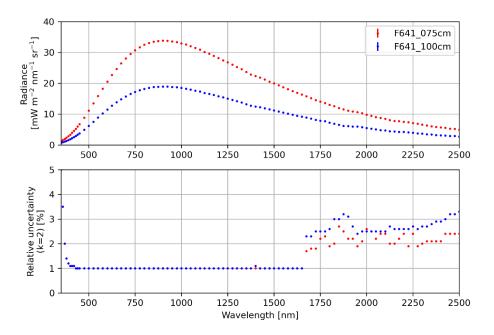
Motivation for having OCR cal/char capabilities

- **Development of compact and** versatile sensor systems for measuring R_{rs}
- Selection of suitable mini spectrometers; characterization
 - \triangleright Minimize measurement time
 - Determine linear range
 - Determine stray light \succ
- Absolute radiometric calibration has second priority for us
 - \blacktriangleright L_{up} and E_d with same instrument or calibrated with same light source
 - E_d, L_{sky} for aerosols intended

Off the shelf mini spectrometers

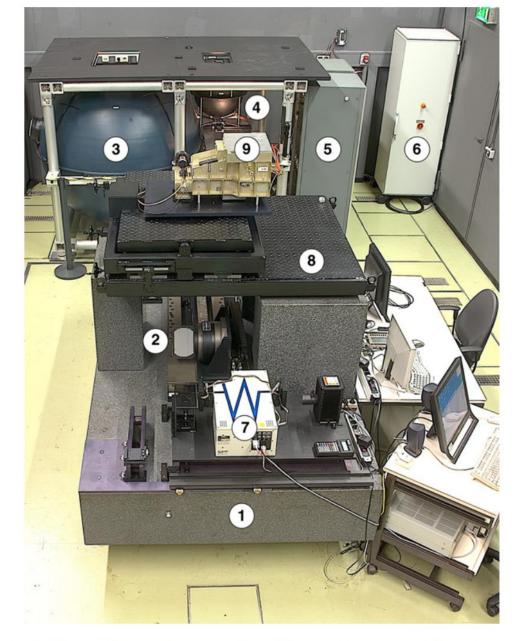

Realisation and traceability of radiometric scale

Radiance Standard RASTA


- Developed at DLR
- 1000 Watt FEL lamp
- 250 x 250 mm² spectralon panel
- 5 radiometers monitor stability

Traceability

- Calibrated at PTB for lamp distances of 75 cm and 100 cm
- Uncertainty (k=2) ~1 % in the VIS-NIR
- Re-calibration when changes > ~0.5 %
- Next calibration in autumn 2025


Available cal/char capabilities

Calibration Home Base CHB

- for imaging spectrometers (APEX, HySpex, ...)
- more capabilities, but overkill for OCR

Lab equipment

- Double-beam spectrophotometer
 - ➤ transmission
 - ➢ reflection
 - ➤ absorption
- Monochromator
- Spectral lamps
- Many filters, e.g. ND, pol, short/long/band pass

Fig. 1. Calibration Home Base (CHB). 1 = Calibration bench, 2 = Folding mirror, 3 = Large integrating sphere, 4 = Small integrating sphere, 5 = Power supplies of large integrating sphere, 6 = Control electronics of folding mirror, 7 = Monochromator, 8 = CHB adapter, 9 = Sensor (ROSIS).

4

Intercomparison and validation activities

- FRM4SOC-1
- Characterization of field spectrometers
- Rrs validation of EnMAP

Full mission evaluation of EnMAP water leaving reflectance products using three atmospheric correction processors

```
MARIANA A. SOPPA,<sup>1</sup> MAXIMILIAN BRELL,<sup>2</sup>
SABINE CHABRILLAT,<sup>2,3</sup> LEONARDO M. A. ALVARADO,<sup>1,4</sup>
PETER GEGE,<sup>5</sup> STEFAN PLATTNER,<sup>5</sup>
IAN SOMLAI-SCHWEIGER.<sup>5</sup> THOMAS SCHROEDER,<sup>6</sup>
FRANCOIS STEINMETZ,<sup>7</sup> DANIEL SCHEFFLER,<sup>2</sup>
VITTORIO E. BRANDO,<sup>8</sup> MARIANO BRESCIANI,<sup>9</sup>
CLAUDIA GIARDINO,<sup>9</sup> SIMONE COLELLA,<sup>8</sup>
DIETER VANSTEENWEGEN,<sup>10</sup> MAXIMILIAN LANGHEINRICH,<sup>11</sup>
EMILIANO CARMONA,<sup>11</sup> MARTIN BACHMANN,<sup>11</sup>
MIGUEL PATO,<sup>11</sup> SEBASTIAN FISCHER,<sup>12</sup>
AND ASTRID BRACHER<sup>1,13,*</sup>
```

```
https://doi.org/10.1364/OE.523813
```


Article

Results from Verification of Reference Irradiance and Radiance Sources Laboratory Calibration Experiment Campaign

Agnieszka Białek ^{1,*}, Teresa Goodman ¹, Emma Woolliams ¹, Johannes F. S. Brachmann ², <u>Thomas Schwarzmaier</u> ², Joel Kuusk ³, Ilmar Ansko ³, Viktor Vabson ³, Ian C. Lau ⁴, Christopher MacLellan ⁵, Sabine Marty ⁶, Michael Ondrusek ⁷, William Servantes ¹, Sarah Taylor ¹, Ronnie Van Dommelen ⁸, Andrew Barnard ⁸, Vincenzo Vellucci ⁹, Andrew C. Banks ¹, Nigel Fox ¹, Riho Vendt ³, Craig Donlon ¹⁰ and Tânia Casal ¹⁰

https://www.mdpi.com/2072-4292/12/14/2220

Intercomparison of field spectrometers: characterization methodology for suitability assessment towards water reflectance measurements

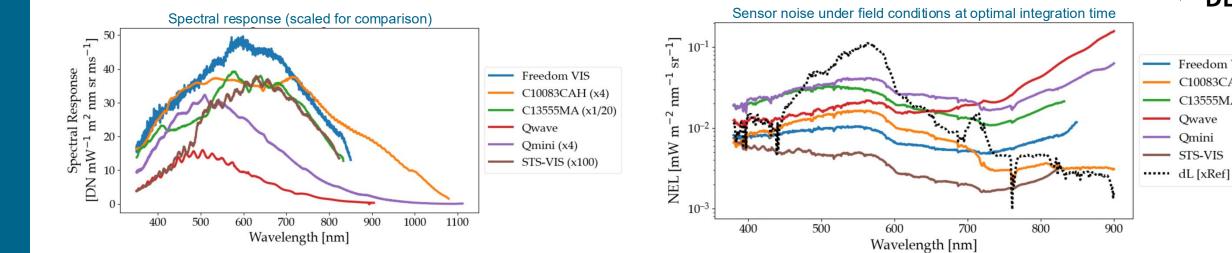
Ian Somlai-Schweiger 1,*, Stefan Plattner 1 and Peter Gege 1

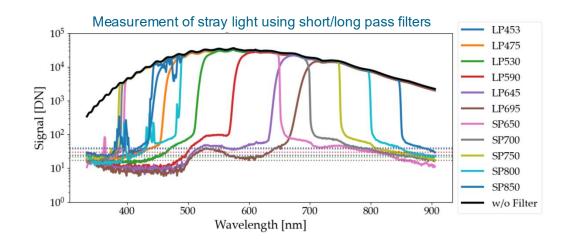
In preparation

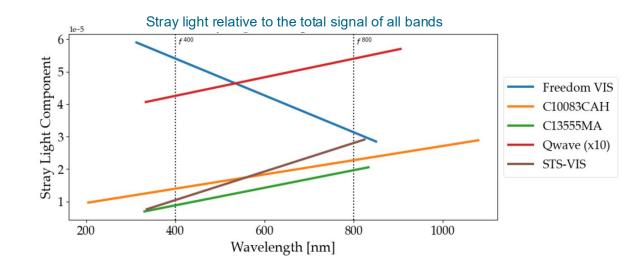
5

Examples from mini spectrometer comparison

Freedom VIS


C10083CAH


C13555MA


Qwave

Qmini

STS-VIS

6

Funding, human resources and challenges

- Focus of Institute is on airborne and spaceborne activities
- CHB is a prestige activity for our Institute with sufficient funding and human resources
- RASTA is part of CHB, hence maintaining a well-calibrated radiance source is ensured
- Field spectrometer calibration is a side activity with no extra staff
- Team too small to further develop OCR cal/char, e.g. to set up irradiance calibration
- No necessity for absolute radiometric calibration of our field instruments