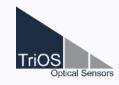

21.05.2025

Welcome to TriOS

Short introduction

2011


2016

Founded in 1998 2011: TriOS moved to Rastede with 20 employees

Currently ~100 employees

Sustainability: Solar Panels, geothermal energy, natural habitats and recycling

Portfolio

RAMSES >1900 devices since 1998

21.05.2025

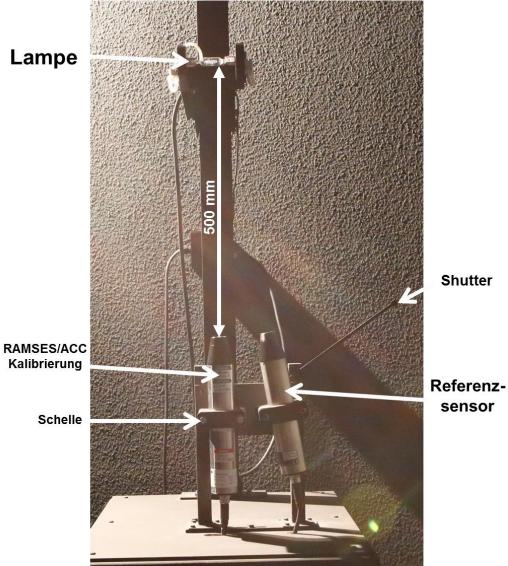
For the 20th anniversary RAMSES got new features like G2 webbrowser Modbus RTU + internal temperature sensor + inclination sensor for 360° for x, y, z axes (no up and down)

We service sensors sold in 2002 until today

- Very long lifetime
- traceable history of calibrations and repairs

Calibration and Interfaces

RAMSES


Calibration NIST Standard Traceability Calibrated DXW-1000 W (max. running time 50 hours)

TemperatureDarkpixel compensationInternal Temperature
not yet implemented into calibration

Interfaces RS-232 or RS-485 Modbus RTU & Ethernet available

Calibration: Irradiance

Static procedure Room temperature between 21°C and 24°C Distance measured with a ruler and laser beam **Reference** sensor

Warm-up time lamp until stable readings @8 A

Shutter

Warm-up time sensor: 16 measurements

Calibration sensor: 16 measurements Scatter: 16 measurements

Water calibration (cosine collector fully covered with water): directly after air calibration 16 measurements Scatter: 16 measurements

7

Calibration: Radiance

Lampe

Shutter Referenz-RAMSES/ARC sensor Kalibrierung Befestigungs-O-Ring Schelle

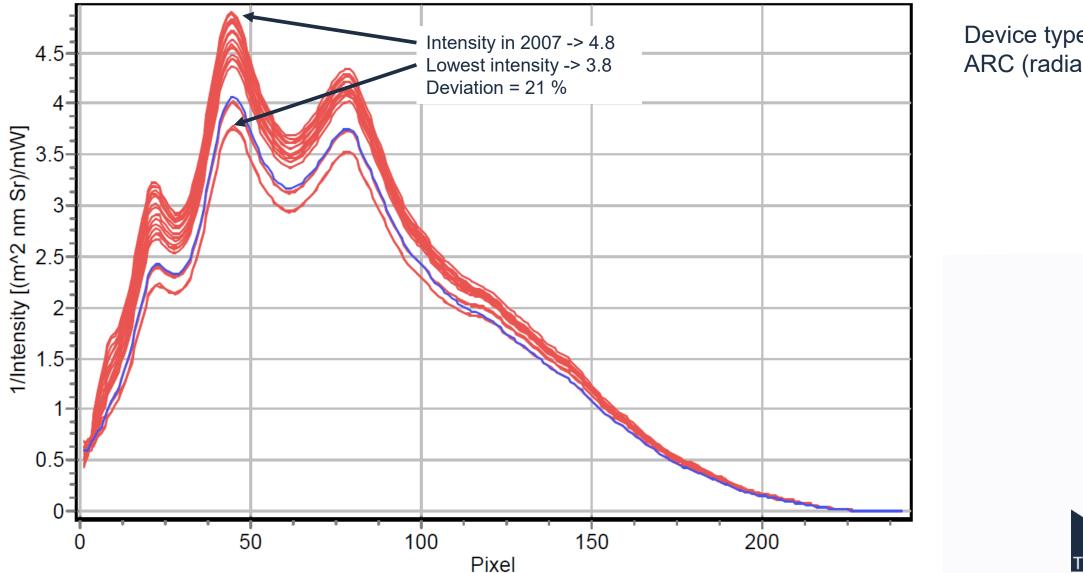
Spectralon-Platte

Static procedure since 2007 Room temperature between 21°C and 24°C Reference sensor

Warm-up time lamp until stable readings @8 A

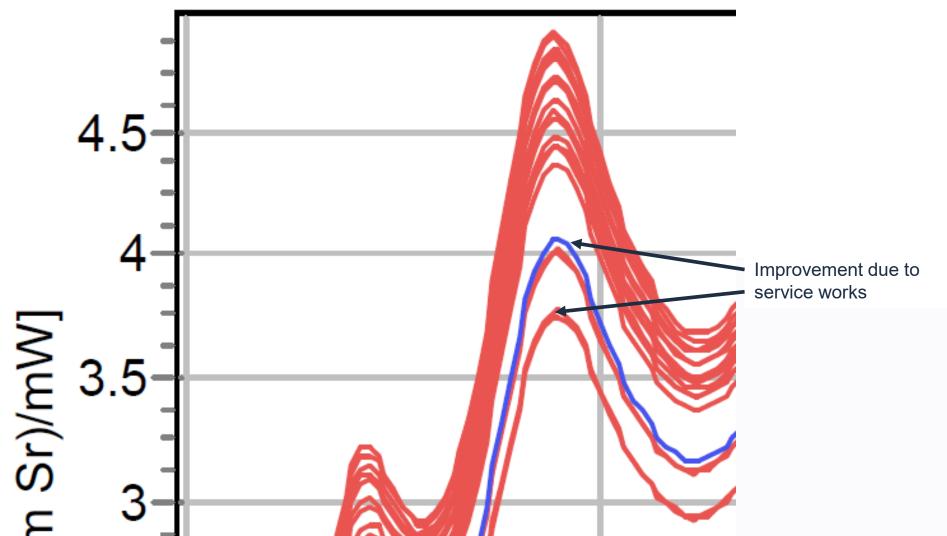
Warm-up time sensor: 16 measurements

Calibration sensor: 16 measurements Scatter: 16 measurements

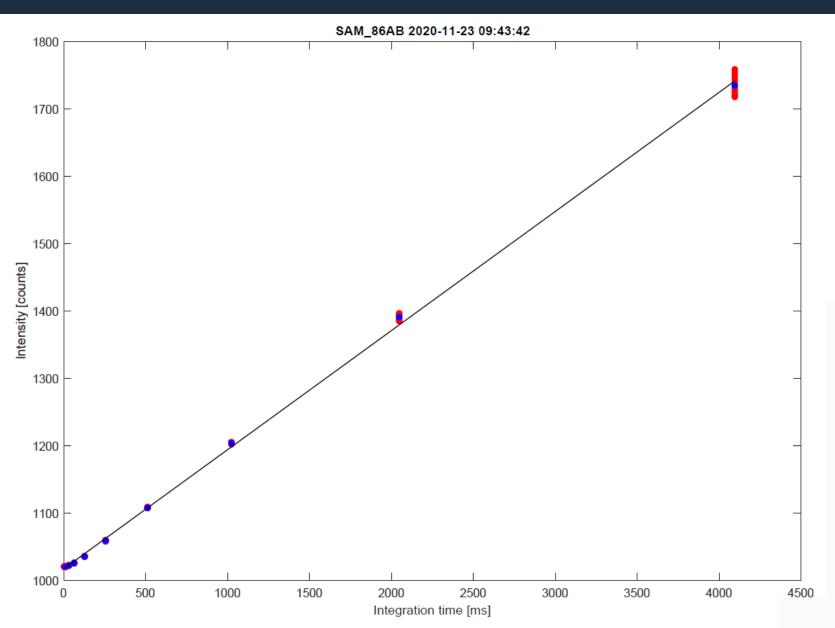

Water calibration: theoretical (Ohde und Siegel, 2003)

 $n_g(\lambda) = 1.4424 + \frac{7.1661}{\lambda - 144.7170}$

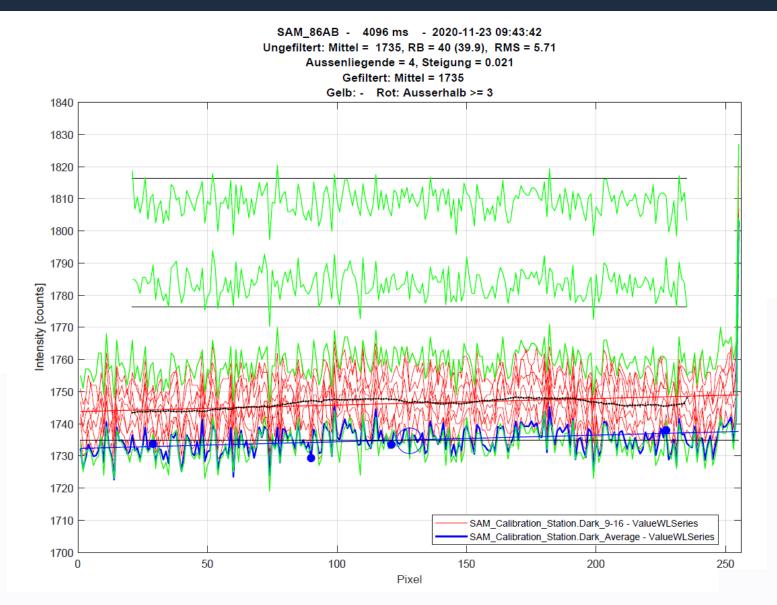
Refraction index: 1.460082 @550 nm



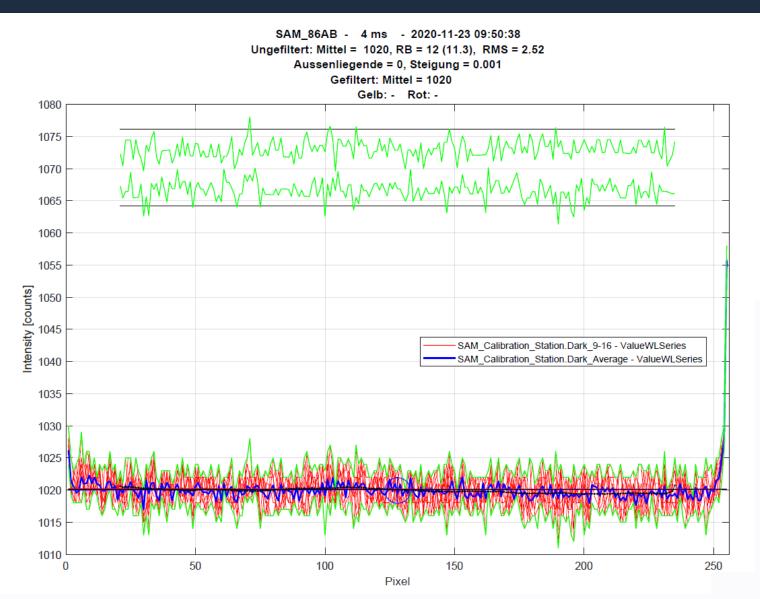
Traceability since 2007 until 2024


Device type: ARC (radiance)

Traceability since 2007 until 2024



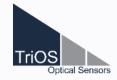
Calibration: dark measurements



Calibration: dark measurements

TriOS Optical Sensors

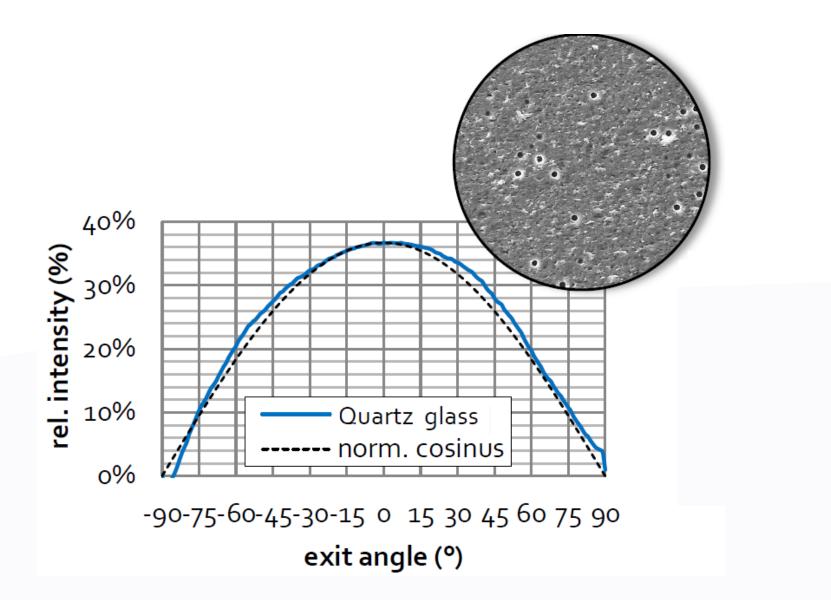
Calibration: dark measurements

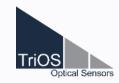


Calibration and Characterisation

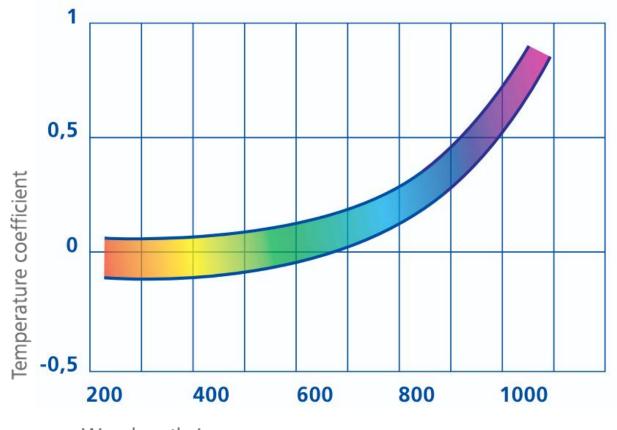
Table 3.1. Basic requirements on the type and occurrence of calibrations and main characterizations of field radiometers supporting ocean color validation activities.

	Regular	Occasional	Initial	Class-based
Radiometric responsivity	х			
Spectral response		x		
Out-of-band & stray light		х		
Immersion factor (irradiance)			x	
Immersion factor (radiance)				х
Angular response			х	
Linearity				х
Integration time				х
Temperature response				х
Polarization sensitivity				х
Dark-signal	х			
Temporal response				х
Pressure effects				х

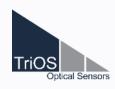

Source: IOCCG Protocol Series (2019). Protocols for Satellite Ocean Colour Data Validation: In Situ Optical Radiometry. Zibordi, G., Voss, K. J., Johnson, B. C. and Mueller, J. L. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 3.0, IOCCG, Dartmouth, NS, Canada.



Characterisation: Angular response

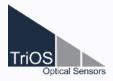

21.05.2025

15


Characterisation

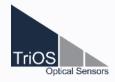
As the graphic shows, a change of temperature T does not cause any change in sensitivity. In the range up to 1100 nm, the sensitivity even increases as the temperature rises. At temperatures between - 50 and + 50 °C, the sensitivity changes by less than 1% in the range of 1 to 1.55 μ m, even for InGaAs photodiode arrays. Only outside of the specified range is a stronger temperature influence caused by a different coating. (Falling temperatures cause reduced sensitivity on the band edge.) The photodiode arrays used do not show any deterioration in the signal-to-noise ratio. Only the dark current I dark increases with rising temperature, resulting in a reduction of the dynamic range.

Wavelength / nm


Source: Brochure "BR_Spectrometer_Modules_EN.pdf" by Carl Zeiss https://asset-downloads.zeiss.com/catalogs/download/spc/adb036b4-b2e5-48d2-ae76-3903ddfe9c06/BR_Spectrometer_Modules_EN.pdf

Characterisation: Conclusion

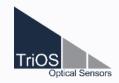
Spectral response Stray light matrix Determination of immersion factors for irradiance sensors Determination of immersion factors for radiance sensors Determination of angular response of irradiance sensors in air Measuring FOV of the radiance sensors in air **Determination of the non-linearity** Determination of the dark signal Determination of the thermal sensitivity Determination of the polarisation sensitivity **Determination of the temporal response** Determination of the wavelength scale Determination of the signal-to-noise ratio


performed by Carl Zeiss in advance done during every calibration done during every calibration theoretical (Ohde & Siegel, 2003) available on request available on request not available done during every calibration (all IT's) specification by Carl Zeiss not available not available performed by Carl Zeiss in advance specified by Carl Zeiss

RAMSES Technical specification

		ACC		ARC	ASC			
	TriOS our proster to		and the second	THOS Question PLACED	ETriosector auses			
	UV	UV/VIS	VIS	VIS	VIS			
Wavelength range* [nm]	280500	280720	320950	320950	320950			
Detector*	256 Channel silicon photo diode array							
Pixel dispersion* [nm/ pixel]	2.2	2.2	3.3	3.3	3.3			
Wavelength accuracy*	0.2	0.2	0.3	0.3	0.3			
Usable channels	100	200	190	190	190			

	ACC-UV	ACC-VIS	ARC-VIS	ASC-VIS			
	UVA / UV B irradiance	VIS irradiance	VIS radiance	VIS scalar irradiance			
Wavelength range*	280500 nm	320950 nm					
Type Saturation (IT: 4 ms)**	20 W m ⁻² nm ⁻¹ (at 300 nm)	10 W m ⁻² nm ⁻¹ (at 400 nm)		20 W m ⁻² nm ⁻¹ (at 400 nm)			
	17 W m ⁻² nm ⁻¹ (at 360 nm)	8 W m ⁻² nm ⁻¹ (at 500 nm)	1 W m ⁻² nm ⁻¹ sr ⁻¹ (at 500 nm)	12 W m ⁻² nm ⁻¹ (at 500 nm)			
	18 W m ⁻² nm ⁻¹ (at 500 nm)	14 W m ⁻² nm ⁻¹ (at 700 nm)		15 W m ⁻² nm ⁻¹ (at 700 nm)			
Type NEI**** (IT: 8 s)	0.85 µW m ⁻² nm ⁻¹ (at 300 nm)	0.4 µW m ⁻² nm ⁻¹ (at 400 nm)		0.8 µW m ⁻² nm ⁻¹ (at 400 nm)			
	0.75 µW m ⁻² nm ⁻¹ (at 360 nm)	0.4 µW m ⁻² nm ⁻¹ (at 500 nm)	0.25 µW m ⁻² nm ⁻¹ sr ⁻¹	0.6 µW m ⁻² nm ⁻¹ (at 500 nm)			
	0.80 µW m ⁻² nm ⁻¹ (at 500 nm)	0.6 µW m ⁻² nm ⁻¹ (at 700 nm)		0.8 µW m ⁻² nm ⁻¹ (at 700 nm)			
Collector	Kos	inus	FOV: 7° in air	Spherical, 2 Pi			
Accuracy	Better than	610% ***	Better than 6% ***	Better than 5% ***			
Integration time	4 ms8 s						



Temperature compensation

New generation of RAMSES has an internal temperature sensor

Thank you!

