https://frm4soc2.eumetsat.int

The second **FRM4SOC-2 WORKSHOP** on Calibration and Characterisation of Ocean Color Field Radiometers

20 – 22 May 2025

@ Tartu Observatory, University of Tartu, Estonia Measurement uncertainties in processing field data with HyperCP. Agnieszka Bialek, NPL

IMPLEMENTED BY

OUTLINE

• HyperCP a brief introduction

Uncertainty evaluation what is different from the lab calibration

• Uncertainties in HyperCP

HyperCP Project Team

¹ NASA Goddard Space Flight Center

Morgan State University

⁵ University of Victoria

⁷ National Physical Laboratory

<u>Co-leads:</u>

Dirk Aurin^{1,2}, Juan Ignacio Gossn ^{3,4}

Contributors:

Nathan Vandenberg ⁵ Maycira Costa ⁵ Agnieszka Bialek ⁷ Ashley Ramsay ⁷ Alexis Deru ⁶ Gabriele Bai ⁶ Marine Bretagnon ⁶ Nils Haëntjens ⁸ Philipp Grötsch ⁹ Ryan Vandermeulen ¹⁰ Mohamed Abdelmegid

Riho Vendt¹¹

³ EUMETSAT

EUMETSAT

⁴ Copernicus Programme of European Commission

⁶ ACRI-ST

⁸ University of Maine

⁸ University of Tartu

Slide in courtesy of Dirk Aurin

⁹ Gybe Inc.

HyperCP Main v1.2.1		
H	yperCP	
Select/Create Configuration File	5-2-3	
sample_SEABIRD_pySAS.cfg	0	
New	Edit Delete	
Input Data Parent Directory	/Users/daurin/Projects/HyperCP/Sample_Data	
Output Directory /Users/daurin/Proj	^^ Mimic Input Dir. vvv	
Output Directory //Users/daurin/Proj Ancillary Data File (SeaBASS format; MI /Users/daurin/Projects/HyperCP/Sample	^^ Mimic Input Dir. vvv jects/HyperCP/Sample_Data/M99SS/v12/pySAS_Factory UST USE UTC) e_Data/FICE22_pySAS_Ancillary.sbl	
Output Directory /Users/daurin/Proj Ancillary Data File (SeaBASS format; MI /Users/daurin/Projects/HyperCP/Sample	^^ Mimic Input Dir. vvv ijects/HyperCP/Sample_Data/M99SS/v12/pySAS_Factory UST USE UTC) e_Data/FICE22_pySAS_Ancillary.sb Remove	
Output Directory /Users/daurin/Pro Ancillary Data File (SeaBASS format; MU /Users/daurin/Projects/HyperCP/Sample Add	<pre>^^ Mimic Input Dir. vvv jjects/HyperCP/Sample_Data/M99SS/v12/pySAS_Factory UST USE UTC) e_Data/FICE22_pySAS_Ancillary.sb </pre>	
Ancillary Directory //Users/daurin/Pro Ancillary Data File (SeaBASS format; MI //Users/daurin/Projects/HyperCP/Sample Add Single-Level Processing	<pre>^^ Mimic Input Dir. vvv ijects/HyperCP/Sample_Data/M99SS/v12/pySAS_Factory UST USE UTC) e_Data/FICE22_pySAS_Ancillary.sb Remove Level 0 (Raw)> Level 1A (HDF5) L1A> L1AQC L1AQC> L1B</pre>	
Ancillary Directory /Users/daurin/Pro Ancillary Data File (SeaBASS format; MU /Users/daurin/Projects/HyperCP/Sample Add Single-Level Processing	^^ Mimic Input Dir. vvv ijects/HyperCP/Sample_Data/M99SS/v12/pySAS_Factory UST USE UTC) e_Data/FICE22_pySAS_Ancillary.sb Remove Level 0 (Raw)> Level 1A (HDF5) L1A> L1AQC L1A QC L1B QC	
Ancillary Directory /Users/daurin/Pro Ancillary Data File (SeaBASS format; MU /Users/daurin/Projects/HyperCP/Sample Add Single-Level Processing	^^ Mimic Input Dir. vvv ijects/HyperCP/Sample_Data/M99SS/v12/pySAS_Factory UST USE UTC) le_Data/FICE22_pySAS_Ancillary.sb Remove Level 0 (Raw)> Level 1A (HDF5) L1A> L1AQC L1A> L1B L1B> L1B L1B> L1BQC L1BQC> L2	
Ancillary Directory (/Users/daurin/Pro Ancillary Data File (SeaBASS format; MI /Users/daurin/Projects/HyperCP/Sample Add Single-Level Processing Multi-Level Processing	^^ Mimic Input Dir. vvv ijects/HyperCP/Sample_Data/M99SS/v12/pySAS_Factory UST USE UTC) e_Data/FICE22_pySAS_Ancillary.sb Remove Level 0 (Raw)> Level 1A (HDF5) L1A> L1AQC L1A> L1B L1BQC> L1B L1BQC> L2 Raw (BIN)>> L2 (HDF5)	

https://github.com/nasa/HyperCP

See README for instruction/description •

(opernicus

IMPLEMENTED BY

EUMETSAT

UNIVERSITY OF TARTU

- See Discussion for support ٠
- See Issues for reporting •

PROGRAMME OF

THE EUROPEAN UNION

Measurement uncertainties in processing field data with HyperCP.

Copernicus – Fiducial Reference Measurements for Satellite Ocean Colour – FRM4SOC Phase-2

Methodology and resources

• the Guide to the expression of Uncertainty in Measurement (GUM) and its supplements

CoMet Toolkit

The **CoMet Toolkit** (Community Metrology Toolkit) is an open-source software project to develop Python tools for the handling of errorcovariance information in the analysis of measurement data.

```
import xarray as xr
import obsarray
from punpy import MeasurementFunction, MCPropagation
```

```
# read digital effects table
ds = xr.open_dataset("digital_effects_table_gaslaw_example.nc")
```

About

Tools -

Define your measurement function inside a subclass of MeasurementFunction
class IdealGasLaw(MeasurementFunction):
 def meas_function(self, pres, temp, n):
 return (n *temp * 8.134)/pres

Examples

News

People

Q

Create Monte Carlo Propagation object, and create MeasurementFunction class # object with required parameters such as names of input quantites in ds prop = MCPropagation(10000) gl = IdealGastaw(prop yyapiables=["processing" "temperature" "processing"

propagate the uncertainties on the input quantites in ds to the measurand # uncertainties in ds_y (propagate_ds returns random, systematic and structured) ds_y = gl.propagate_ds(ds, store_unc_percent=True)

https://www.comet-toolkit.org/

Tartu Observatory

Copernicus – Fiducial Reference Measurements for Satellite Ocean Colour – FRM4SOC Phase-?

GUM Methodology applied in CoMET tool

JCGM100:2008. Evaluation of measurement data - Guide to the expression of uncertainty in measurement JCGM101:2008. Evaluation of measurement data - Supplement 1 to the Guide to the expression of uncertainty in measurement - Propagation of distributions using a Monte Carlo method.

Calibration

"operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication."

Copernicus – Fiducial Reference Measurements for Satellite Ocean Colour – FRM4SOC Phase-2

Class based regime HyperOCR TriOS Class-specific uncertainties propagated FRM-compliant with moderate uncertainties

BROCKMANN CONSULT GMBH

(opernicus

UNION

EOScience

Consiglio Nazionale delle Ricembo

12

NPL 20-21.05.2025

Copernicus – Fiducial Reference Measurements for Satellite Ocean Colour – FRM4SOC Phase-2

Characterisation file for each instument

4/2023 17:05	File folder
4/2023 17:05	File folder

(opernicus UNION

0

0

0

0

pol

radcal

IMPLEMENTED BY **EUMETSAT**

UNIVERSITY OF TARTU Tartu Observatory

NPL[®] 20-21.05.2025

13

Improved Precision and Uncertainty Estimation

v1.1:

- ✓ No instrument-specific characterizations, corrections, or uncertainty
- Only environmental variability and uncertainty course estimate for the glint correction (Mobley 1999).

v1.2 Class-based:

- Class-based (Sea-Bird, TriOS) characterizations and uncertainties (no corrections) in addition to environmental variability.
- Monte Carlo estimates of uncertainty for glint correction.

v1.2 Full-FRM:

- Instrument-specific characterizations, corrections, and uncertainties applied in addition to environmental variability.
- Monte Carlo estimates of uncertainty for glint correction.

Improved Precision and Uncertainty Estimation

Slide in courtesy of Dirk Aurin

Uncertainty Breakdowns for Class-based

Lw Class Based Uncertainty Components at 443.05nm

Cal times to the second secon

Lw Class Based Uncertainty Components at 559.98nm

Lw Class Based Uncertainty Components at 673.47nm

Key message to remember

• No absolute radiometric calibration uncertainty – no uncertainty in is situ data

 For TRIOS and SeaBird radiometric calibration files with two dark – corrected DN values recorded at two integration time allow us to apply non-linearity correction

